ﻻ يوجد ملخص باللغة العربية
We examine the correlations of star formation rate (SFR) and gas-phase metallicity $Z$. We first predict how the SFR, cold gas mass and $Z$ will change with variations in inflow rate or in star-formation efficiency (SFE) in a simple gas-regulator framework. The changes $Delta {rm log}$SFR and $Delta {rm log} Z$, are found to be negatively (positively) correlated when driving the gas-regulator with time-varying inflow rate (SFE). We then study the correlation of $Delta {rm log}$sSFR (specific SFR) and $Delta {rm log}$(O/H) from observations, at both $sim$100 pc and galactic scales, based on two 2-dimensional spectroscopic surveys with different spatial resolutions, MAD and MaNGA. After taking out the overall mass and radial dependences, which may reflect changes in inflow gas metallicity and/or outflow mass-loading, we find that $Delta {rm log}$sSFR and $Delta {rm log}$(O/H) on galactic are found to be negatively correlated, but $Delta {rm log}$sSFR and $Delta {rm log}$(O/H) are positively correlated on $sim$100 pc scales within galaxies. If we assume that the variations across the population reflect temporal variations in individual objects, we conclude that variations in the star formation rate are primarily driven by time-varying inflow at galactic scales, and driven by time-varying SFE at $sim$100 pc scales. We build a theoretical framework to understand the correlation between SFR, gas mass and metallicity, as well as their variability, which potentially uncovers the relevant physical processes of star formation at different scales.
We present a full high resolution SPIRE FTS spectrum of the nearby ultraluminous infrared galaxy Mrk231. In total 25 lines are detected, including CO J=5-4 through J=13-12, 7 rotational lines of H2O, 3 of OH+ and one line each of H2O+, CH+, and HF. W
The results of a detailed analysis of SMA, VLA, and IRAM observations of the region of massive star formation S255N in CO(2---1), h, hh, co and some other lines is presented. Combining interferometer and single-dish data has enabled a more detailed
Using a sample of dwarf galaxies observed using the VIMOS IFU on the VLT, we investigate the mass-metallicity relation (MZR) as a function of star formation rate (FMR$_{text{SFR}}$) as well as HI-gas mass (FMR$_{text{HI}}$). We combine our IFU data w
We explore how the star formation efficiency in a protocluster clump is regulated by metallicity dependent stellar winds from the newly formed massive OB stars (Mstar >5 Msol). The model describes the co-evolution of the mass function of gravitationa
Present-day clusters are massive halos containing mostly quiescent galaxies, while distant protoclusters are extended structures containing numerous star-forming galaxies. We investigate the implications of this fundamental change in a cosmological c