ترغب بنشر مسار تعليمي؟ اضغط هنا

Stellar scattering and the formation of exponential discs in self-gravitating systems

56   0   0.0 ( 0 )
 نشر من قبل Jian Wu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jian Wu




اسأل ChatGPT حول البحث

We show, using the N-body code GADGET-2, that stellar scattering by massive clumps can produce exponential discs, and the effectiveness of the process depends on the mass of scattering centres, as well as the stability of the galactic disc. Heavy, dense scattering centres in a less stable disc generate an exponential profile quickly, with a timescale shorter than 1 Gyr. The profile evolution due to scattering can make a near-exponential disc under various initial stellar distributions. This result supports analytic theories that predict the scattering processes always favour the zero entropy gradient solution to the Jeans/Poisson equations, whose profile is a near-exponential. Profile changes are accompanied by disc thickening, and a power-law increase in stellar velocity dispersion in both vertical and radial directions is also observed through the evolution. Close encounters between stars and clumps can produce abrupt changes in stellar orbits and shift stars radially. These events can make trajectories more eccentric, but many leave eccentricities little changed. On average, orbital eccentricities of stars increase moderately with time.



قيم البحث

اقرأ أيضاً

We study particle dynamics in self-gravitating gaseous discs with a simple cooling law prescription via two-dimensional simulations in the shearing sheet approximation. It is well known that structures arising in the gaseous component of the disc due to a gravitational instability can have a significant effect on the evolution of dust particles. Previous results have shown that spiral density waves can be highly efficient at collecting dust particles, creating significant local over-densities of particles. The degree of such concentrations has been shown to be dependent on two parameters: the size of the dust particles and the rate of gas cooling. We expand on these findings, including the self-gravity of dust particles, to see how these particle over-densities evolve. We use the PENCIL CODE to solve the local shearing sheet equations for gas on a fixed grid together with the equations of motion for solids coupled to the gas through an aerodynamic drag force. We find that the enhancements in the surface density of particles in spiral density wave crests can reach levels high enough to allow the solid component of the disc to collapse under its own self-gravity. This produces many gravitationally bound collections of particles within the spiral structure. The total mass contained in bound structures appears nearly independent of the cooling time, suggesting that the formation of planetesimals through dust particle trapping by self-gravitating density waves may be possible at a larger range of radii within a disc than previously thought. So, density waves due to gravitational instabilities in the early stages of star formation may provide excellent sites for the rapid formation of many large, planetesimal-sized objects.
The mechanism through which meter-sized boulders grow to km-sized planetesimals in protoplanetary discs is a subject of active research, since it is critical for planet formation. To avoid spiralling into the protostar due to aerodynamic drag, object s must rapidly grow from cm-sized pebbles, which are tightly coupled to the gas, to large boulders of 1-100m in diameter. It is already well known that over-densities in the gaseous component of the disc provide potential sites for the collection of solids, and that significant density structures in the gaseous component of the disc (e.g., spiral density waves) can trap solids efficiently enough for the solid component of the disc to undergo further gravitational collapse due to their own self-gravity. In this work, we employ the PENCIL CODE to conduct local shearing sheet simulations of massive self-gravitating protoplanetary discs, to study the effect of anticyclonic transient vortices, or eddies, on the evolution of solids in these discs. We find that these types of structures are extremely efficient at concentrating small and intermediate-sized dust particles with friction times comparable to, or less than, the local orbital period of the disc. This can lead to significant over-densities in the solid component of the disc, with density enhancements comparable to, and even higher, than those within spiral density waves; increasing the rate of gravitational collapse of solids into bound structures.
The long timescale evolution of a self-gravitating system is generically driven by two-body encounters. In many cases, the motion of the particles is primarily governed by the mean field potential. When this potential is integrable, particles move on nearly fixed orbits, which can be described in terms of angle-action variables. The mean field potential drives fast orbital motions (angles) whose associated orbits (actions) are adiabatically conserved on short dynamical timescales. The long-term stochastic evolution of the actions is driven by the potential fluctuations around the mean field and in particular by resonant two-body encounters, for which the angular frequencies of two particles are in resonance. We show that the stochastic gravitational fluctuations acting on the particles can generically be described by a correlated Gaussian noise. Using this approach, the so-called $eta$-formalism, we derive a diffusion equation for the actions in the test particle limit. We show that in the appropriate limits, this diffusion equation is equivalent to the inhomogeneous Balescu-Lenard and Landau equations. This approach provides a new view of the resonant diffusion processes associated with long-term orbital distortions. Finally, by investigating the example of the Hamiltonian Mean Field Model, we show how the present method generically allows for alternative calculations of the long-term diffusion coefficients in inhomogeneous systems.
120 - Ken Rice 2016
It is quite likely that self-gravity will play an important role in the evolution of accretion discs, in particular those around young stars, and those around supermassive black holes. We summarise, here, our current understanding of the evolution of such discs, focussing more on discs in young stellar system, than on discs in active galactic nuclei. We consider the conditions under which such discs may fragment to form bound objects, and when they might, instead, be expected to settle into a quasi-steady, self-regulated state. We also discuss how this understanding may depend on the mass of the disc relative to the mass of the central object, and how it might depend on the presence of external irradiation. Additionally, we consider whether or not fragmentation might be stochastic, where we might expect it to occur in an actual protostellar disc, and if there is any evidence for fragmentation actually playing a role in the formation of planetary-mass bodies. Although there are still a number of outstanding issue, such as the convergence of simulations of self-gravitating discs, whether or not there is more than one mode of fragmentation, and quite what role self-gravitating discs may play in the planet formation process, our general understanding of these systems seems quite robust.
I review recent progresses in the dynamics and the evolution of self-gravitating accretion discs. Accretion discs are a fundamental component of several astrophysical systems on very diverse scales, and can be found around supermassive black holes in Active Galactic Nuclei (AGN), and also in our Galaxy around stellar mass compact objects and around young stars. Notwithstanding the specific differences arising from such diversity in physical extent, all these systems share a common feature where a central object is fed from the accretion disc, due to the effect of turbulence and disc instabilities, which are able to remove the angular momentum from the gas and allow its accretion. In recent years, it has become increasingly apparent that the gravitational field produced by the disc itself (the discs self-gravity) is an important ingredient in the models, especially in the context of protostellar discs and of AGN discs. Indeed, it appears that in many cases (and especially in the colder outer parts of the disc) the development of gravitational instabilities can be one of the main agents in the redistribution of angular momentum. In some cases, the instability can be strong enough to lead to the formation of gravitationally bound clumps within the disc, and thus to determine the disc fragmentation. As a result, progress in our understanding of the dynamics of self-gravitating discs is essential to understand the processes that lead to the feeding of both young stars and of supermassive black holes in AGN. At the same time, understanding the fragmentation conditions is important to determine under which conditions AGN discs would fragment and form stars and whether protostellar discs might form giant gaseous planets through disc fragmentation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا