Gapless quantum spin liquid and global phase diagram of the spin-1/2 $J_1$-$J_2$ square antiferromagnetic Heisenberg model


الملخص بالإنكليزية

We use the state-of-the-art tensor network state method, specifically, the finite projected entangled pair state (PEPS) algorithm, to simulate the global phase diagram of spin-$1/2$ $J_1$-$J_2$ Heisenberg model on square lattices up to $24times 24$. We provide very solid evidences to show that the nature of the intermediate nonmagnetic phase is a gapless quantum spin liquid (QSL), whose spin-spin and dimer-dimer correlations both decay with a power law behavior. There also exists a valence-bond solid (VBS) phase in a very narrow region $0.56lesssim J_2/J_1leq0.61$ before the system enters the well known collinear antiferromagnetic phase. We stress that our work gives rise to the first solid PEPS results beyond the well established density matrix renormalization group (DMRG) through one-to-one direct benchmark for small system sizes. Thus our numerical evidences explicitly demonstrate the huge power of PEPS for solving long-standing 2D quantum many-body problems. The physical nature of the discovered gapless QSL and potential experimental implications are also addressed.

تحميل البحث