ﻻ يوجد ملخص باللغة العربية
Zero point fluctuations of quantum fields should generate a large cosmological constant energy density in any spacetime. How then can we have anything other than de Sitter space without fine tuning? Well tempering -- dynamical cancellation of the cosmological constant using degeneracy within the field equations -- can replace a large cosmological constant with a much lower energy state. Here we give an explicit mechanism to obtain a Minkowski solution, replacing the cosmological constant with zero, and testing its attractor nature and persistence through a vacuum phase transition. We derive the general conditions that Horndeski scalar-tensor gravity must possess, and evolve in a fugue of functions, to deliver nothing and make the universe be flat.
Well tempering is one of the few classical field theory methods for solving the original cosmological constant problem, dynamically canceling a large (possibly Planck scale) vacuum energy and leaving the matter component intact, while providing a via
Self tuning is one of the few methods for dynamically cancelling a large cosmological constant and yet giving an accelerating universe. Its drawback is that it tends to screen all sources of energy density, including matter. We develop a model that t
It is well known that string theories naturally compactify on anti-de Sitter spaces, and yet cosmological observations show no evidence of a negative cosmological constant in the early Universes evolution. In this letter we present two simple nonloca
We present here how the gravothermal or Antonovs instability, which was originally formulated in the microcanonical ensemble, is modified in the presence of a cosmological constant and in the canonical ensemble. In contrast to the microcanonical ense
Bouncing models have been proposed by many authors as a completion, or even as an alternative to inflation for the description of the very early and dense Universe. However, most bouncing models contain a contracting phase from a very large and raref