ترغب بنشر مسار تعليمي؟ اضغط هنا

CANDELS Meets GSWLC: Evolution of the Relationship Between Morphology and Star Formation Since z = 2

97   0   0.0 ( 0 )
 نشر من قبل Chandler Osborne
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Galaxy morphology and its evolution over the cosmic epoch hold important clues for understanding the regulation of star formation (SF). However, studying the relationship between morphology and SF has been hindered by the availability of consistent data at different redshifts. Our sample, combining CANDELS (0.8 < z < 2.5) and the GALEX-SDSS-WISE Legacy Catalog (GSWLC; z ~ 0), has physical parameters derived using consistent SED fitting with flexible dust attenuation laws. We adopt visual classifications from Kartaltepe et al. 2015 and expand them to z ~ 0 using SDSS images matching the physical resolution of CANDELS rest-frame optical images and deep FUV GALEX images matching the physical resolution of the CANDELS rest-frame FUV images. Our main finding is that disks with SF clumps at z ~ 0 make a similar fraction (~15%) of star-forming galaxies as at z ~ 2. The clumpy disk contribution to the SF budget peaks at z ~ 1, rather than z ~ 2, suggesting that the principal epoch of disk assembly continues to lower redshifts. Star-forming spheroids (blue nuggets), though less centrally concentrated than quenched spheroids, contribute significantly (~15%) to the SF budget at z ~ 1-2, suggesting that compaction precedes quenching. Among green valley and quiescent galaxies, the pure spheroid fraction drops since z ~ 1, whereas spheroids with disks (S0-like) become dominant. Mergers at or nearing coalescence are enhanced in SFR relative to the main sequence at all redshifts by a factor of ~2, but contribute $lesssim$5% to the SF budget, with their contribution remaining small above the main sequence.



قيم البحث

اقرأ أيضاً

The morphology-density relationship states that dense cosmic environments such as galaxy clusters have an overabundance of quiescent elliptical galaxies, but it is unclear at which redshift this relationship is first established. We study the morphol ogy of 4 clusters with $1.2<z<1.8$ using HST imaging and the morphology computation code statmorph. By comparing median morphology of cluster galaxies to CANDELS field galaxies using Monte Carlo analysis, we find that 2 out of 4 clusters (at z=1.19 and z=1.75) have an established morphology-density relationship with more than $3sigma$ significance. $sim$50% of galaxies in these clusters are bulge-dominated compared to $sim$30% in the field, and they are significantly more compact. This result is more significant for low-mass galaxies with $log M/M_odot lessapprox 10.5$, showing that low-mass galaxies are affected the most in clusters. We also find an intriguing system of two z $approx$ 1.45 clusters at a unusually small separation 2D separation of $3$ and 3D separation of $approx73$ Mpc that exhibit no morphology-density relationship but have enhanced merger signatures. We conclude that the environmental mechanism responsible for the morphology-density relationship is 1) already active as early as z=1.75, 2) forms compact, bulge-dominated galaxies and 3) affects primarily low-mass galaxies. However, there is a significant degree of intracluster variance that may depend on the larger cosmological environment in which the cluster is embedded.
Spectroscopic + photometric redshifts, stellar mass estimates, and rest-frame colors from the 3D-HST survey are combined with structural parameter measurements from CANDELS imaging to determine the galaxy size-mass distribution over the redshift rang e 0<z<3. Separating early- and late-type galaxies on the basis of star-formation activity, we confirm that early-type galaxies are on average smaller than late-type galaxies at all redshifts, and find a significantly different rate of average size evolution at fixed galaxy mass, with fast evolution for the early-type population, R_eff ~ (1+z)^-1.48, and moderate evolution for the late-type population, R_eff ~ (1+z)^-0.75. The large sample size and dynamic range in both galaxy mass and redshift, in combination with the high fidelity of our measurements due to the extensive use of spectroscopic data, not only fortify previous results, but also enable us to probe beyond simple average galaxy size measurements. At all redshifts the slope of the size-mass relation is shallow, R_eff ~ M_star^0.22, for late-type galaxies with stellar mass >3x10^9 M_sol, and steep, R_eff M_star^0.75, for early-type galaxies with stellar mass >2x10^10 M_sol. The intrinsic scatter is <~0.2 dex for all galaxy types and redshifts. For late-type galaxies, the logarithmic size distribution is not symmetric, but skewed toward small sizes: at all redshifts and masses a tail of small late-type galaxies exists that overlaps in size with the early-type galaxy population. The number density of massive (~10^11 M_sol), compact (R_eff < 2 kpc) early-type galaxies increases from z=3 to z=1.5-2 and then strongly decreases at later cosmic times.
We study the star-forming (SF) population of galaxies within a sample of 209 IR-selected galaxy clusters at 0.3$,leq,z,leq,$1.1 in the ELAIS-N1 and XMM-LSS fields, exploiting the first HSC-SSP data release. The large area and depth of these data allo ws us to analyze the dependence of the SF fraction, $f_{SF}$, on stellar mass and environment separately. Using $R/R_{200}$ to trace environment, we observe a decrease in $f_{SF}$ from the field towards the cluster core, which strongly depends on stellar mass and redshift. The data show an accelerated growth of the quiescent population within the cluster environment: the $f_{SF}$ vs. stellar mass relation of the cluster core ($R/R_{200},leq,$0.4) is always below that of the field (4$,leq,R/R_{200},<,$6). Finally, we find that environmental and mass quenching efficiencies depend on galaxy stellar mass and distance to the center of the cluster, demonstrating that the two effects are not separable in the cluster environment. We suggest that the increase of the mass quenching efficiency in the cluster core may emerge from an initial population of galaxies formed ``in situ. The dependence of the environmental quenching efficiency on stellar mass favors models in which galaxies exhaust their reservoir of gas through star formation and outflows, after new gas supply is truncated when galaxies enter the cluster.
We study the evidence for a connection between active galactic nuclei (AGN) fueling and star formation by investigating the relationship between the X-ray luminosities of AGN and the star formation rates (SFRs) of their host galaxies. We identify a s ample of 309 AGN with $10^{41}<L_mathrm{X}<10^{44} $ erg s$^{-1}$ at $0.2 < z < 1.2$ in the PRIMUS redshift survey. We find AGN in galaxies with a wide range of SFR at a given $L_X$. We do not find a significant correlation between SFR and the observed instantaneous $L_X$ for star forming AGN host galaxies. However, there is a weak but significant correlation between the mean $L_mathrm{X}$ and SFR of detected AGN in star forming galaxies, which likely reflects that $L_mathrm{X}$ varies on shorter timescales than SFR. We find no correlation between stellar mass and $L_mathrm{X}$ within the AGN population. Within both populations of star forming and quiescent galaxies, we find a similar power-law distribution in the probability of hosting an AGN as a function of specific accretion rate. Furthermore, at a given stellar mass, we find a star forming galaxy $sim2-3$ more likely than a quiescent galaxy to host an AGN of a given specific accretion rate. The probability of a galaxy hosting an AGN is constant across the main sequence of star formation. These results indicate that there is an underlying connection between star formation and the presence of AGN, but AGN are often hosted by quiescent galaxies.
148 - Alan Dressler 2009
We present the star formation rate (SFR) and starburst fraction (SBF) for a sample of field galaxies from the ICBS intermediate-redshift cluster survey. We use [O II] and Spitzer 24 micron fluxes to measure SFRs, and 24 micron fluxes and H-delta abso rption to measure of SBFs, for both our sample and a present-epoch field sample from the Sloan Digital Sky Survey (SDSS) and Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. We find a precipitous decline in the SFR since z=1, in agreement with other studies, as well as a corresponding rapid decline in the fraction of galaxies undergoing long-duration moderate-amplitude starbursts. We suggest that the change in both the rate and mode of star formation could result from the strong decrease since z=1 of gas available for star formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا