ﻻ يوجد ملخص باللغة العربية
Today, scene graph generation(SGG) task is largely limited in realistic scenarios, mainly due to the extremely long-tailed bias of predicate annotation distribution. Thus, tackling the class imbalance trouble of SGG is critical and challenging. In this paper, we first discover that when predicate labels have strong correlation with each other, prevalent re-balancing strategies(e.g., re-sampling and re-weighting) will give rise to either over-fitting the tail data(e.g., bench sitting on sidewalk rather than on), or still suffering the adverse effect from the original uneven distribution(e.g., aggregating varied parked on/standing on/sitting on into on). We argue the principal reason is that re-balancing strategies are sensitive to the frequencies of predicates yet blind to their relatedness, which may play a more important role to promote the learning of predicate features. Therefore, we propose a novel Predicate-Correlation Perception Learning(PCPL for short) scheme to adaptively seek out appropriate loss weights by directly perceiving and utilizing the correlation among predicate classes. Moreover, our PCPL framework is further equipped with a graph encoder module to better extract context features. Extensive experiments on the benchmark VG150 dataset show that the proposed PCPL performs markedly better on tail classes while well-preserving the performance on head ones, which significantly outperforms previous state-of-the-art methods.
Todays scene graph generation (SGG) task is still far from practical, mainly due to the severe training bias, e.g., collapsing diverse human walk on / sit on / lay on beach into human on beach. Given such SGG, the down-stream tasks such as VQA can ha
Scene graph generation models understand the scene through object and predicate recognition, but are prone to mistakes due to the challenges of perception in the wild. Perception errors often lead to nonsensical compositions in the output scene graph
Generating realistic images of complex visual scenes becomes challenging when one wishes to control the structure of the generated images. Previous approaches showed that scenes with few entities can be controlled using scene graphs, but this approac
Scene graphs provide valuable information to many downstream tasks. Many scene graph generation (SGG) models solely use the limited annotated relation triples for training, leading to their underperformance on low-shot (few and zero) scenarios, espec
Despite recent advancements in single-domain or single-object image generation, it is still challenging to generate complex scenes containing diverse, multiple objects and their interactions. Scene graphs, composed of nodes as objects and directed-ed