ﻻ يوجد ملخص باللغة العربية
Many experiments have confirmed the spectral hardening in a few hundred GV of cosmic ray (CR) nuclei spectra, and 3 different origins have been proposed: the primary source acceleration, the propagation, and the superposition of different kinds of sources. In this work, the break power law has been employed to fit each of the AMS-02 nuclei spectra directly when the rigidity greater than 45 GV. The fitting results of the break rigidity and the spectral index differences less and greater than the break rigidity show complicated relationships among different nuclei species, which could not been reproduced naturally by a simple primary source scenario or a propagation scenario. However, with a natural and simple assumption, the superposition of different kinds of sources could have the potential to explain the fitting results successfully. CR nuclei spectra from one single experiment in future (such as DAMPE) will provide us the opportunity to do cross checks and reveal the properties of the different kinds of sources.
Based on the precise nuclei data released by AMS-02, we study the spectra hardening of both the primary (proton, helium, carbon, oxygen, and the primary component of nitrogen) and the secondary (anti-proton, lithium, beryllium, boron and the secondar
Many experiments have confirmed the spectral hardening at a few hundred GV of cosmic-ray (CR) nuclei spectra, and 3 general different origins have been proposed: the primary source acceleration, the propagation, and the superposition of different kin
In this work, we considered 2 schemes (a high-rigidity break in primary source injections and a high-rigidity break in diffusion coefficient) to reproduce the newly released AMS-02 nuclei spectra (He, C, N, O, Li, Be, and B) when the rigidity larger
AMS-02 on the International Space Station has been releasing data of unprecedented accuracy. This poses new challenges for their interpretation. We refine the methodology to get a statistically sound determination of the cosmic-ray propagation parame
The local pulsar and its progenitor, SNR, can together accelerate the positron, electron and nuclei to very high energy. The famous excesses of positron(nuclei) above $20$($200$) GeV possibly come from such kind of local source. This hints that the p