ترغب بنشر مسار تعليمي؟ اضغط هنا

The CARMENES search for exoplanets around M dwarfs: Rubidium abundances in nearby cool stars

96   0   0.0 ( 0 )
 نشر من قبل Carlos Abia
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this study, abundances of the neutron-capture elements Rb, Sr, and Zr are derived, for the first time, in a sample of nearby M dwarfs. We focus on stars in the metallicity range -0.5<[Fe/H]<+0.3, an interval poorly explored for Rb abundances in previous analyses. To do this we use high-resolution, high-signal-to-noise-ratio, optical and near-infrared spectra of 57 M dwarfs observed with CARMENES. The resulting [Sr/Fe] and [Zr/Fe] ratios for most M dwarfs are almost constant at about the solar value, and are identical to those found in GK dwarfs of the same metallicity. However, for Rb we find systematic underabundances ([Rb/Fe]<0.0) by a factor two on average. Furthermore, a tendency is found for Rb-but not for other heavy elements (Sr, Zr) -to increase with increasing metallicity such that [Rb/Fe]>0.0 is attained at metallicities higher than solar. These are surprising results, never seen for any other heavy element, and are difficult to understand within the formulation of the s- and r-processes, both contributing sources to the Galactic Rb abundance. We discuss the reliability of these findings for Rb in terms of non-LTE effects, stellar activity, or an anomalous Rb abundance in the Solar System, but no explanation is found. We then interpret the full observed [Rb/Fe] versus [Fe/H] trend within the framework of theoretical predictions from state-of-the-art chemical evolution models for heavy elements, but a simple interpretation is not found either. In particular, the possible secondary behaviour of the [Rb/Fe] ratio at super-solar metallicities would require a much larger production of Rb than currently predicted in AGB stars through the s-process without overproducing Sr and Zr.



قيم البحث

اقرأ أيضاً

Context. The CARMENES spectrograph is surveying ~300 M dwarf stars in search for exoplanets. Among the target stars, spectroscopic binary systems have been discovered, which can be used to measure fundamental properties of stars. Aims. Using spectros copic observations, we determine the orbital and physical properties of nine new double-line spectroscopic binary systems by analysing their radial velocity curves. Methods. We use two-dimensional cross-correlation techniques to derive the radial velocities of the targets, which are then employed to determine the orbital properties. Photometric data from the literature are also analysed to search for possible eclipses and to measure stellar variability, which can yield rotation periods. Results. Out of the 342 stars selected for the CARMENES survey, 9 have been found to be double-line spectroscopic binaries, with periods ranging from 1.13 to ~8000 days and orbits with eccentricities up to 0.54. We provide empirical orbital properties and minimum masses for the sample of spectroscopic binaries. Absolute masses are also estimated from mass-luminosity calibrations, ranging between ~0.1 and ~0.6 Msol . Conclusions. These new binary systems increase the number of double-line M dwarf binary systems with known orbital parameters by 15%, and they have lower mass ratios on average.
(Abridged) We characterize a series of neutral vanadium atomic absorption lines in the 800--910nm wavelength region of high signal-to-noise, high-resolution, telluric-corrected M-dwarf spectra from the CARMENES survey. Many of these lines are promine nt and exhibit a distinctive broad and flat-bottom shape, which is a result of hyperfine structure (HFS). We investigate the potential and implications of these HFS split lines for abundance analysis of cool stars. With standard spectral synthesis routines, as provided by the spectroscopy software iSpec and the latest atomic data (including HFS) available from the VALD3 database, we modeled these striking line profiles. We used them to measure V abundances of cool dwarfs. We determined V abundances for 135 early M dwarfs (M0.0V to M3.5V) in the CARMENES guaranteed time observations sample. They exhibit a [V/Fe]-[Fe/H] trend consistent with that derived from nearby FG dwarfs. The tight ($pm$ 0.1 dex) correlation between [V/H] and [Fe/H] suggests the potential application of V as an alternative metallicity indicator in M dwarfs. We also show hints that neglecting to model HFS could partially explain the temperature correlation in V abundance measurements observed in previous studies of samples involving dwarf stars with $T_{rm eff} lesssim 5300$K. Our work suggests that HFS can impact certain absorption lines in cool photospheres more severely than in Sun-like ones. Therefore, we advocate that HFS should be carefully treated in abundance studies in stars cooler than $sim 5000$K. On the other hand, strong HFS split lines in high-resolution spectra present an opportunity for precision chemical analyses of large samples of cool stars. The V-to-Fe trends exhibited by the local M dwarfs continue to challenge theoretical models of V production in the Galaxy.
Chromospheric modeling of observed differences in stellar activity lines is imperative to fully understand the upper atmospheres of late-type stars. We present one-dimensional parametrized chromosphere models computed with the atmosphere code PHOENIX using an underlying photosphere of 3500 K. The aim of this work is to model chromospheric lines of a sample of 50 M2-3 dwarfs observed in the framework of the CARMENES, the Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared and optical Echelle Spectrographs, exoplanet survey. The spectral comparison between observed data and models is performed in the chromospheric lines of Na I D2, H$alpha$, and the bluest Ca II infrared triplet line to obtain best-fit models for each star in the sample. We find that for inactive stars a single model with a VAL C-like temperature structure is sufficient to describe simultaneously all three lines adequately. Active stars are rather modeled by a combination of an inactive and an active model, also giving the filling factors of inactive and active regions. Moreover, the fitting of linear combinations on variable stars yields relationships between filling factors and activity states, indicating that more active phases are coupled to a larger portion of active regions on the surface of the star.
The new CARMENES instrument comprises two high-resolution and high-stability spectrographs that are used to search for habitable planets around M dwarfs in the visible and near-infrared regime via the Doppler technique. Characterising our target samp le is important for constraining the physical properties of any planetary systems that are detected. The aim of this paper is to determine the fundamental stellar parameters of the CARMENES M-dwarf target sample from high-resolution spectra observed with CARMENES. We also include several M-dwarf spectra observed with other high-resolution spectrographs, that is CAFE, FEROS, and HRS, for completeness. We used a {chi}^2 method to derive the stellar parameters effective temperature T_eff, surface gravity log g, and metallicity [Fe/H] of the target stars by fitting the most recent version of the PHOENIX-ACES models to high-resolution spectroscopic data. These stellar atmosphere models incorporate a new equation of state to describe spectral features of low-temperature stellar atmospheres. Since T_eff, log g, and [Fe/H] show degeneracies, the surface gravity is determined independently using stellar evolutionary models. We derive the stellar parameters for a total of 300 stars. The fits achieve very good agreement between the PHOENIX models and observed spectra. We estimate that our method provides parameters with uncertainties of {sigma} T_eff = 51 K, {sigma} log g = 0.07, and {sigma} [Fe/H] = 0.16, and show that atmosphere models for low-mass stars have significantly improved in the last years. Our work also provides an independent test of the new PHOENIX-ACES models, and a comparison for other methods using low-resolution spectra. In particular, our effective temperatures agree well with literature values, while metallicities determined with our method exhibit a larger spread when compared to literature results.
We determine the radii and masses of 293 nearby, bright M dwarfs of the CARMENES survey. This is the first time that such a large and homogeneous high-resolution (R>80 000) spectroscopic survey has been used to derive these fundamental stellar parame ters. We derived the radii using Stefan-Boltzmanns law. We obtained the required effective temperatures $T_{rm eff}$ from a spectral analysis and we obtained the required luminosities L from integrated broadband photometry together with the Gaia DR2 parallaxes. The mass was then determined using a mass-radius relation that we derived from eclipsing binaries known in the literature. We compared this method with three other methods: (1) We calculated the mass from the radius and the surface gravity log g, which was obtained from the same spectral analysis as $T_{rm eff}$. (2) We used a widely used infrared mass-magnitude relation. (3) We used a Bayesian approach to infer stellar parameters from the comparison of the absolute magnitudes and colors of our targets with evolutionary models. Between spectral types M0V and M7V our radii cover the range $0.1,R_{ ormalsizeodot}<R<0.6,R_{ ormalsizeodot}$ with an error of 2-3% and our masses cover $0.09,{mathcal M}_{ ormalsizeodot}<{mathcal M}<0.6,{mathcal M}_{ ormalsizeodot}$ with an error of 3-5%. We find good agreement between the masses determined with these different methods for most of our targets. Only the masses of very young objects show discrepancies. This can be well explained with the assumptions that we used for our methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا