ﻻ يوجد ملخص باللغة العربية
We study the sending-or-not-sending (SNS) protocol with discrete phase modulation of coherent states. We first make the security of the SNS protocol with discrete phase modulation. We then present analytic formulas for key rate calculation. We take numerical simulations for the key rate through discrete phase modulation of both the original SNS protocol and the SNS protocol with two way classical communications of active-odd-parity pairing (AOPP). Our numerical simulation results show that only with $6$ phase values, the key rates of the SNS protocol can exceed the linear bound, and with $12$ phase values, the key rates are very close to the results of the SNS protocol with continuously modulated phase-randomization.
Twin-field quantum key distribution (TF-QKD) and its variants can overcome the fundamental rate-distance limit of QKD which has been demonstrated in the laboratory and field while their physical implementations with side channels remains to be furthe
Twin field quantum key distribution promises high key rates at long distance to beat the rate distance limit. Here, applying the sending or not sending TF QKD protocol, we experimentally demonstrate a secure key distribution breaking the absolute key
Quantum key distribution endows people with information-theoretical security in communications. Twin-field quantum key distribution (TF-QKD) has attracted considerable attention because of its outstanding key rates over long distances. Recently, seve
Quantum Key Distribution is a quantum communication technique in which random numbers are encoded on quantum systems, usually photons, and sent from one party, Alice, to another, Bob. Using the data sent via the quantum signals, supplemented by class
Twin-Field (TF) quantum key distribution (QKD) is a major candidate to be the new benchmark for far-distance QKD implementations, since its secret key rate can overcome the repeaterless bound by means of a simple interferometric measurement. Many var