The convexity of optimal transport-based waveform inversion for certain structured velocity models


الملخص بالإنكليزية

Full--waveform inversion (FWI) is a method used to determine properties of the Earth from information on the surface. We use the squared Wasserstein distance (squared $W_2$ distance) as an objective function to invert for the velocity of seismic waves as a function of position in the Earth, and we discuss its convexity with respect to the velocity parameter. In one dimension, we consider constant, piecewise increasing, and linearly increasing velocity models as a function of position, and we show the convexity of the squared $W_2$ distance with respect to the velocity parameter on the interval from zero to the true value of the velocity parameter when the source function is a probability measure. Furthermore, we consider a two--dimensional model where velocity is linearly increasing as a function of depth and prove the convexity of the squared $W_2$ distance in the velocity parameter on large regions containing the true value. We discuss the convexity of the squared $W_2$ distance compared with the convexity of the squared $L^2$ norm, and we discuss the relationship between frequency and convexity of these respective distances. We also discuss multiple approaches to optimal transport for non--probability measures by first converting the wave data into probability measures.

تحميل البحث