ترغب بنشر مسار تعليمي؟ اضغط هنا

Single-shot Hyperspectral-Depth Imaging with Learned Diffractive Optics

268   0   0.0 ( 0 )
 نشر من قبل Min H. Kim
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Imaging depth and spectrum have been extensively studied in isolation from each other for decades. Recently, hyperspectral-depth (HS-D) imaging emerges to capture both information simultaneously by combining two different imaging systems; one for depth, the other for spectrum. While being accurate, this combinational approach induces increased form factor, cost, capture time, and alignment/registration problems. In this work, departing from the combinational principle, we propose a compact single-shot monocular HS-D imaging method. Our method uses a diffractive optical element (DOE), the point spread function of which changes with respect to both depth and spectrum. This enables us to reconstruct spectrum and depth from a single captured image. To this end, we develop a differentiable simulator and a neural-network-based reconstruction that are jointly optimized via automatic differentiation. To facilitate learning the DOE, we present a first HS-D dataset by building a benchtop HS-D imager that acquires high-quality ground truth. We evaluate our method with synthetic and real experiments by building an experimental prototype and achieve state-of-the-art HS-D imaging results.



قيم البحث

اقرأ أيضاً

213 - Hui Xie , Zhuang Zhao , Jing Han 2021
Hyperspectral images (HSIs) can provide rich spatial and spectral information with extensive application prospects. Recently, several methods using convolutional neural networks (CNNs) to reconstruct HSIs have been developed. However, most deep learn ing methods fit a brute-force mapping relationship between the compressive and standard HSIs. Thus, the learned mapping would be invalid when the observation data deviate from the training data. To recover the three-dimensional HSIs from two-dimensional compressive images, we present dual-camera equipment with a physics-informed self-supervising CNN method based on a coded aperture snapshot spectral imaging system. Our method effectively exploits the spatial-spectral relativization from the coded spectral information and forms a self-supervising system based on the camera quantum effect model. The experimental results show that our method can be adapted to a wide imaging environment with good performance. In addition, compared with most of the network-based methods, our system does not require a dedicated dataset for pre-training. Therefore, it has greater scenario adaptability and better generalization ability. Meanwhile, our system can be constantly fine-tuned and self-improved in real-life scenarios.
Hyperspectral imaging is useful for applications ranging from medical diagnostics to agricultural crop monitoring; however, traditional scanning hyperspectral imagers are prohibitively slow and expensive for widespread adoption. Snapshot techniques e xist but are often confined to bulky benchtop setups or have low spatio-spectral resolution. In this paper, we propose a novel, compact, and inexpensive computational camera for snapshot hyperspectral imaging. Our system consists of a tiled spectral filter array placed directly on the image sensor and a diffuser placed close to the sensor. Each point in the world maps to a unique pseudorandom pattern on the spectral filter array, which encodes multiplexed spatio-spectral information. By solving a sparsity-constrained inverse problem, we recover the hyperspectral volume with sub-super-pixel resolution. Our hyperspectral imaging framework is flexible and can be designed with contiguous or non-contiguous spectral filters that can be chosen for a given application. We provide theory for system design, demonstrate a prototype device, and present experimental results with high spatio-spectral resolution.
86 - Wei He , Naoto Yokoya , 2020
Coded aperture snapshot spectral imaging (CASSI) is a promising technique to capture the three-dimensional hyperspectral image (HSI) using a single coded two-dimensional (2D) measurement, in which algorithms are used to perform the inverse problem. D ue to the ill-posed nature, various regularizers have been exploited to reconstruct the 3D data from the 2D measurement. Unfortunately, the accuracy and computational complexity are unsatisfied. One feasible solution is to utilize additional information such as the RGB measurement in CASSI. Considering the combined CASSI and RGB measurement, in this paper, we propose a new fusion model for the HSI reconstruction. We investigate the spectral low-rank property of HSI composed of a spectral basis and spatial coefficients. Specifically, the RGB measurement is utilized to estimate the coefficients, meanwhile the CASSI measurement is adopted to provide the orthogonal spectral basis. We further propose a patch processing strategy to enhance the spectral low-rank property of HSI. The proposed model neither requires non-local processing or iteration, nor the spectral sensing matrix of the RGB detector. Extensive experiments on both simulated and real HSI dataset demonstrate that our proposed method outperforms previous state-of-the-art not only in quality but also speeds up the reconstruction more than 5000 times.
Hyperspectral image (HSI) contains both spatial pattern and spectral information which has been widely used in food safety, remote sensing, and medical detection. However, the acquisition of hyperspectral images is usually costly due to the complicat ed apparatus for the acquisition of optical spectrum. Recently, it has been reported that HSI can be reconstructed from single RGB image using convolution neural network (CNN) algorithms. Compared with the traditional hyperspectral cameras, the method based on CNN algorithms is simple, portable and low cost. In this study, we focused on the influence of the RGB camera spectral sensitivity (CSS) on the HSI. A Xenon lamp incorporated with a monochromator were used as the standard light source to calibrate the CSS. And the experimental results show that the CSS plays a significant role in the reconstruction accuracy of an HSI. In addition, we proposed a new HSI reconstruction network where the dimensional structure of the original hyperspectral datacube was modified by 3D matrix transpose to improve the reconstruction accuracy.
297 - Jiaming Liu , Yu Sun , 2019
We introduce a new algorithm for regularized reconstruction of multispectral (MS) images from noisy linear measurements. Unlike traditional approaches, the proposed algorithm regularizes the recovery problem by using a prior specified emph{only} thro ugh a learned denoising function. More specifically, we propose a new accelerated gradient method (AGM) variant of regularization by denoising (RED) for model-based MS image reconstruction. The key ingredient of our approach is the three-dimensional (3D) deep neural net (DNN) denoiser that can fully leverage spationspectral correlations within MS images. Our results suggest the generalizability of our MS-RED algorithm, where a single trained DNN can be used to solve several different MS imaging problems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا