ترغب بنشر مسار تعليمي؟ اضغط هنا

Temporal Continuity Based Unsupervised Learning for Person Re-Identification

122   0   0.0 ( 0 )
 نشر من قبل Usman Ali
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Person re-identification (re-id) aims to match the same person from images taken across multiple cameras. Most existing person re-id methods generally require a large amount of identity labeled data to act as discriminative guideline for representation learning. Difficulty in manually collecting identity labeled data leads to poor adaptability in practical scenarios. To overcome this problem, we propose an unsupervised center-based clustering approach capable of progressively learning and exploiting the underlying re-id discriminative information from temporal continuity within a camera. We call our framework Temporal Continuity based Unsupervised Learning (TCUL). Specifically, TCUL simultaneously does center based clustering of unlabeled (target) dataset and fine-tunes a convolutional neural network (CNN) pre-trained on irrelevant labeled (source) dataset to enhance discriminative capability of the CNN for the target dataset. Furthermore, it exploits temporally continuous nature of images within-camera jointly with spatial similarity of feature maps across-cameras to generate reliable pseudo-labels for training a re-identification model. As the training progresses, number of reliable samples keep on growing adaptively which in turn boosts representation ability of the CNN. Extensive experiments on three large-scale person re-id benchmark datasets are conducted to compare our framework with state-of-the-art techniques, which demonstrate superiority of TCUL over existing methods.



قيم البحث

اقرأ أيضاً

This paper proposes a Temporal Complementary Learning Network that extracts complementary features of consecutive video frames for video person re-identification. Firstly, we introduce a Temporal Saliency Erasing (TSE) module including a saliency era sing operation and a series of ordered learners. Specifically, for a specific frame of a video, the saliency erasing operation drives the specific learner to mine new and complementary parts by erasing the parts activated by previous frames. Such that the diverse visual features can be discovered for consecutive frames and finally form an integral characteristic of the target identity. Furthermore, a Temporal Saliency Boosting (TSB) module is designed to propagate the salient information among video frames to enhance the salient feature. It is complementary to TSE by effectively alleviating the information loss caused by the erasing operation of TSE. Extensive experiments show our method performs favorably against state-of-the-arts. The source code is available at https://github.com/blue-blue272/VideoReID-TCLNet.
Most of current person re-identification (ReID) methods neglect a spatial-temporal constraint. Given a query image, conventional methods compute the feature distances between the query image and all the gallery images and return a similarity ranked t able. When the gallery database is very large in practice, these approaches fail to obtain a good performance due to appearance ambiguity across different camera views. In this paper, we propose a novel two-stream spatial-temporal person ReID (st-ReID) framework that mines both visual semantic information and spatial-temporal information. To this end, a joint similarity metric with Logistic Smoothing (LS) is introduced to integrate two kinds of heterogeneous information into a unified framework. To approximate a complex spatial-temporal probability distribution, we develop a fast Histogram-Parzen (HP) method. With the help of the spatial-temporal constraint, the st-ReID model eliminates lots of irrelevant images and thus narrows the gallery database. Without bells and whistles, our st-ReID method achieves rank-1 accuracy of 98.1% on Market-1501 and 94.4% on DukeMTMC-reID, improving from the baselines 91.2% and 83.8%, respectively, outperforming all previous state-of-the-art methods by a large margin.
In this paper, we present a large scale unlabeled person re-identification (Re-ID) dataset LUPerson and make the first attempt of performing unsupervised pre-training for improving the generalization ability of the learned person Re-ID feature repres entation. This is to address the problem that all existing person Re-ID datasets are all of limited scale due to the costly effort required for data annotation. Previous research tries to leverage models pre-trained on ImageNet to mitigate the shortage of person Re-ID data but suffers from the large domain gap between ImageNet and person Re-ID data. LUPerson is an unlabeled dataset of 4M images of over 200K identities, which is 30X larger than the largest existing Re-ID dataset. It also covers a much diverse range of capturing environments (eg, camera settings, scenes, etc.). Based on this dataset, we systematically study the key factors for learning Re-ID features from two perspectives: data augmentation and contrastive loss. Unsupervised pre-training performed on this large-scale dataset effectively leads to a generic Re-ID feature that can benefit all existing person Re-ID methods. Using our pre-trained model in some basic frameworks, our methods achieve state-of-the-art results without bells and whistles on four widely used Re-ID datasets: CUHK03, Market1501, DukeMTMC, and MSMT17. Our results also show that the performance improvement is more significant on small-scale target datasets or under few-shot setting.
Recent self-supervised contrastive learning provides an effective approach for unsupervised person re-identification (ReID) by learning invariance from different views (transform
We tackle the problem of person re-identification in video setting in this paper, which has been viewed as a crucial task in many applications. Meanwhile, it is very challenging since the task requires learning effective representations from video se quences with heterogeneous spatial-temporal information. We present a novel method - Spatial-Temporal Synergic Residual Network (STSRN) for this problem. STSRN contains a spatial residual extractor, a temporal residual processor and a spatial-temporal smooth module. The smoother can alleviate sample noises along the spatial-temporal dimensions thus enable STSRN extracts more robust spatial-temporal features of consecutive frames. Extensive experiments are conducted on several challenging datasets including iLIDS-VID, PRID2011 and MARS. The results demonstrate that the proposed method achieves consistently superior performance over most of state-of-the-art methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا