ﻻ يوجد ملخص باللغة العربية
Whereas standard treatments of temporal logic are adequate for closed systems, having no run-time interactions with their environment, they fall short for reactive systems, interacting with their environments through synchronisation of actions. This paper introduces reactive temporal logic, a form of temporal logic adapted for the study of reactive systems. I illustrate its use by applying it to formulate definitions of a fair scheduler, and of a correct mutual exclusion protocol. Previous definitions of these concepts were conceptually much more involved or less precise, leading to debates on whether or not a given protocol satisfies the implicit requirements.
We show that metric temporal logic can be viewed as linear time-invariant filtering, by interpreting addition, multiplication, and their neutral elements, over the (max,min,0,1) idempotent dioid. Moreover, by interpreting these operators over the fie
We propose a measure and a metric on the sets of infinite traces generated by a set of atomic propositions. To compute these quantities, we first map properties to subsets of the real numbers and then take the Lebesgue measure of the resulting sets.
For many applications, we are unable to take full advantage of the potential massive parallelisation offered by supercomputers or cloud computing because it is too hard to work out how to divide up the computation task between processors in such a wa
The deployment of autonomous systems in uncertain and dynamic environments has raised fundamental questions. Addressing these is pivotal to build fully autonomous systems and requires a systematic integration of planning and control. We first propose
In this paper, we propose a new logic for expressing and reasoning about probabilistic hyperproperties. Hyperproperties characterize the relation between different independent executions of a system. Probabilistic hyperproperties express quantitative