ترغب بنشر مسار تعليمي؟ اضغط هنا

Finite-size effects in the rough phase of the 3d Ising model

71   0   0.0 ( 0 )
 نشر من قبل Walter Selke
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Walter Selke




اسأل ChatGPT حول البحث

Using Monte Carlo simulations, finite-size effects of interfacial properties in the rough phase of the Ising on a cubic lattice with $Ltimes Ltimes R$ sites are studied. In particular, magnetization profiles perpendicular to the flat interface of size L$times$R are studied, with $L$ being considerably larger than $R$, in the (pre)critical temperature range. The resulting $R$-dependences are compared with predictions of the standard capillary-wave theory, in the Gaussian approximation, and with a field theory based on effective string actions, for $L$=$infty$.



قيم البحث

اقرأ أيضاً

541 - H. Chamati 2008
A detailed analysis of the finite-size effects on the bulk critical behaviour of the $d$-dimensional mean spherical model confined to a film geometry with finite thickness $L$ is reported. Along the finite direction different kinds of boundary condit ions are applied: periodic $(p)$, antiperiodic $(a)$ and free surfaces with Dirichlet $(D)$, Neumann $(N)$ and a combination of Neumann and Dirichlet $(ND)$ on both surfaces. A systematic method for the evaluation of the finite-size corrections to the free energy for the different types of boundary conditions is proposed. The free energy density and the equation for the spherical field are computed for arbitrary $d$. It is found, for $2<d<4$, that the singular part of the free energy has the required finite-size scaling form at the bulk critical temperature only for $(p)$ and $(a)$. For the remaining boundary conditions the standard finite-size scaling hypothesis is not valid. At $d=3$, the critical amplitude of the singular part of the free energy (related to the so called Casimir amplitude) is estimated. We obtain $Delta^{(p)}=-2zeta(3)/(5pi)=-0.153051...$, $Delta^{(a)}=0.274543...$ and $Delta^{(ND)}=0.01922...$, implying a fluctuation--induced attraction between the surfaces for $(p)$ and repulsion in the other two cases. For $(D)$ and $(N)$ we find a logarithmic dependence on $L$.
The low-lying spectrum of the three-dimensional Ising model is investigated numerically; we made use of an equivalence between the excitation gap and the reciprocal correlation length. In the broken-symmetry phase, the magnetic excitations are attrac tive, forming a bound state with an excitation gap m_2(<2m_1) (m_1: elementary excitation gap). It is expected that the ratio m_2/m_1 is a universal constant in the vicinity of the critical point. In order to estimate m_2/m_1, we perform the numerical diagonalization for finite clusters with N le 15 spins. In order to reduce the finite-size errors, we incorporated the extended (next-nearest-neighbor and four-spin) interactions. As a result, we estimate the mass-gap ratio as m_2/m_1=1.84(3).
143 - C.J. Hamer 2000
Energy eigenvalues and order parameters are calculated by exact diagonalization for the transverse Ising model on square lattices of up to 6x6 sites. Finite-size scaling is used to estimate the critical parameters of the model, confirming universalit y with the three-dimensional classical Ising model. Critical amplitudes are also estimated for both the energy gap and the ground-state energy.
155 - N.G. Fytas , A. Malakis 2008
The one-parametric Wang-Landau (WL) method is implemented together with an extrapolation scheme to yield approximations of the two-dimensional (exchange-energy, field-energy) density of states (DOS) of the 3D bimodal random-field Ising model (RFIM). The present approach generalizes our earlier WL implementations, by handling the final stage of the WL process as an entropic sampling scheme, appropriate for the recording of the required two-parametric histograms. We test the accuracy of the proposed extrapolation scheme and then apply it to study the size-shift behavior of the phase diagram of the 3D bimodal RFIM. We present a finite-size converging approach and a well-behaved sequence of estimates for the critical disorder strength. Their asymptotic shift-behavior yields the critical disorder strength and the associated correlation lengths exponent, in agreement with previous estimates from ground-state studies of the model.
Corrections to scaling in the 3D Ising model are studied based on non-perturbative analytical arguments and Monte Carlo (MC) simulation data for different lattice sizes L. Analytical arguments show the existence of corrections with the exponent (gamm a-1)/nu (approximately 0.38), the leading correction-to-scaling exponent being omega =< (gamma-1)/nu. A numerical estimation of omega from the susceptibility data within 40 =< L =< 2048 yields omega=0.25(33). It is consistent with the statement omega =< (gamma-1)/nu, as well as with the value omega = 1/8 of the GFD theory. We reconsider the MC estimation of omega from smaller lattice sizes to show that it does not lead to conclusive results, since the obtained values of omega depend on the particular method chosen. In particular, estimates ranging from omega =1.274(72) to omega=0.18(37) are obtained by four different finite-size scaling methods, using MC data for thermodynamic average quantities, as well as for partition function zeros. We discuss the influence of omega on the estimation of exponents eta and nu.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا