ﻻ يوجد ملخص باللغة العربية
We derive a new explicit formula in terms of sums over graphs for the $n$-point correlation functions of general formal weighted double Hurwitz numbers coming from the Kadomtsev-Petviashvili tau functions of hypergeometric type (also known as Orlov-Scherbin partition functions). Notably, we use the change of variables suggested by the associated spectral curve, and our formula turns out to be a polynomial expression in a certain small set of formal functions defined on the spectral curve.
This article deals with the enumeration of directed lattice walks on the integers with any finite set of steps, starting at a given altitude $j$ and ending at a given altitude $k$, with additional constraints such as, for example, to never attain alt
In this paper, we discuss the properties of the generating functions of spin Hurwitz numbers. In particular, for spin Hurwitz numbers with arbitrary ramification profiles, we construct the weighed sums which are given by Orlovs hypergeometric solutio
Ganter and Kapranov associated a 2-character to 2-representations of a finite group. Elgueta classified 2-representations in the category of 2-vector spaces 2Vect_k in terms of cohomological data. We give an explicit formula for the 2-character in te
Binary functions are a generalisation of the cocircuit spaces of binary matroids to arbitrary functions. Every rank function is assigned a binary function, and the deletion and contraction operations of binary functions generalise matroid deletion an
We introduce the notion of analytic stability data on the Lie algebra of vector fields on a torus. We prove that the subspace of analytic stability data is open and closed in the topological space of all stability data. We formulate a general conject