ﻻ يوجد ملخص باللغة العربية
We study the asymptotics of Schur polynomials with partitions $lambda$ which are almost staircase; more precisely, partitions that differ from $((m-1)(N-1),(m-1)(N-2),ldots,(m-1),0)$ by at most one component at the beginning as $Nrightarrow infty$, for a positive integer $mge 1$ independent of $N$. By applying either determinant formulas or integral representations for Schur functions, we show that $frac{1}{N}log frac{s_{lambda}(u_1,ldots,u_k, x_{k+1},ldots,x_N)}{s_{lambda}(x_1,ldots,x_N)}$ converges to a sum of $k$ single-variable holomorphic functions, each of which depends on the variable $u_i$ for $1leq ileq k$, when there are only finitely many distinct $x_i$s and each $u_i$ is in a neighborhood of $x_i$, as $Nrightarrowinfty$. The results are related to the law of large numbers and central limit theorem for the dimer configurations on contracting square-hexagon lattices with certain boundary conditions.
We prove Stanleys conjecture that, if delta_n is the staircase shape, then the skew Schur functions s_{delta_n / mu} are non-negative sums of Schur P-functions. We prove that the coefficients in this sum count certain fillings of shifted shapes. In p
We give overcrowding estimates for the Sine_beta process, the bulk point process limit of the Gaussian beta-ensemble. We show that the probability of having at least n points in a fixed interval is given by $e^{-frac{beta}{2} n^2 log(n)+O(n^2)}$ as $
For critical bond-percolation on high-dimensional torus, this paper proves sharp lower bounds on the size of the largest cluster, removing a logarithmic correction in the lower bound in Heydenreich and van der Hofstad (2007). This improvement finally
We study the distribution of eigenvalues of almost-Hermitian random matrices associated with the classical Gaussian and Laguerre unitary ensembles. In the almost-Hermitian setting, which was pioneered by Fyodorov, Khoruzhenko and Sommers in the case
The aim of this short article is to convey the basic idea of the original paper [3], without going into too much detail, about how to derive sharp asymptotics of the gyration radius for random walk, self-avoiding walk and oriented percolation above the model-dependent upper critical dimension.