ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent Optical Memory Baesd on A Laser-written On-chip Waveguide

69   0   0.0 ( 0 )
 نشر من قبل Tian Xiang Zhu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum memory is the core device for the construction of large-scale quantum networks. For scalable and convenient practical applications, integrated optical memories, especially on-chip optical memories, are crucial requirements because they can be easily integrated with other on-chip devices. Here, we report the coherent optical memory based on a type-IV waveguide fabricated on the surface of a rare-earth ion-doped crystal (i.e. $mathrm{Eu^{3+}}$:$mathrm{Y_2SiO_5}$). The properties of the optical transition ($mathrm{{^7}F{_0}rightarrow{^5}D{_0}}$) of the $mathrm{Eu^{3+}}$ ions inside the surface waveguide are well preserved compared to those of the bulk crystal. Spin-wave atomic frequency comb storage is demonstrated inside the type-IV waveguide. The reliability of this device is confirmed by the high interference visibility of ${97pm 1%}$ between the retrieval pulse and the reference pulse. The developed on-chip optical memory paves the way towards integrated quantum nodes.



قيم البحث

اقرأ أيضاً

252 - H. Jin , F. M. Liu , P. Xu 2014
Integrated quantum optics becomes a consequent tendency towards practical quantum information processing. Here, we report the on-chip generation and manipulation of photonic entanglement based on reconfigurable lithium niobate waveguide circuits. By introducing periodically poled structure into the waveguide interferometer, two individual photon-pair sources with controllable phase-shift are produced and cascaded by a quantum interference, resulting in a deterministically separated identical photon pair. The state is characterized by 92.9% visibility Hong-Ou-Mandel interference. Continuous morphing from two-photon separated state to bunched state is further demonstrated by on-chip control of electro-optic phase-shift. The photon flux reaches ~1.4*10^7 pairs nm-1 mW-1. Our work presents a scenario for on-chip engineering of different photon sources and paves a way to the fully integrated quantum technologies.
Optical networks that distribute entanglement among quantum technologies will form a powerful backbone for quantum science but are yet to interface with leading quantum hardware such as superconducting qubits. Consequently, these systems remain isola ted because microwave links at room temperature are noisy and lossy. Building connectivity requires interfaces that map quantum information between microwave and optical fields. While preliminary microwave-to-optical (M2O) transducers have been realized, developing efficient, low-noise devices that match superconducting qubit frequencies (gigahertz) and bandwidths (10 kHz - 1 MHz) remains a challenge. Here we demonstrate a proof-of-concept on-chip M2O transducer using $^{171}mathrm{Yb}^{3+}$-ions in yttrium orthovanadate (YVO) coupled to a nanophotonic waveguide and a microwave transmission line. The devices miniaturization, material, and zero-magnetic-field operation are important advances for rare-earth ion magneto-optical devices. Further integration with high quality factor microwave and optical resonators will enable efficient transduction and create opportunities toward multi-platform quantum networks.
The ability to coherently spectrally manipulate quantum information has the potential to improve qubit rates across quantum channels and find applications in optical quantum computing. In this paper we present experiments that use a multi-element sol enoid combined with the three-level gradient echo memory scheme to perform precision spectral manipulation of optical pulses. These operations include bandwidth and frequency manipulation, spectral filtering of separate frequency components, as well as time-delayed interference between pulses with both the same, and different, frequencies. These operations have potential uses in quantum information applications.
We describe a scheme to coherently convert a microwave photon of a superconducting co-planar waveguide resonator to an optical photon emitted into a well-defined temporal and spatial mode. The conversion is realized by a cold atomic ensemble trapped above the surface of the superconducting atom chip, near the antinode of the microwave cavity. The microwave photon couples to a strong Rydberg transition of the atoms that are also driven by a pair of laser fields with appropriate frequencies and wavevectors for an efficient wave-mixing process. With only few thousand atoms in an ensemble of moderate density, the microwave photon can be completely converted into an optical photon emitted with high probability into the phase matched direction and, e.g., fed into a fiber waveguide. This scheme operates in a free-space configuration, without requiring strong coupling of the atoms to a resonant optical cavity.
82 - F. Liu , A. J. Brash , J. OHara 2017
On-chip single-photon sources are key components for integrated photonic quantum technologies. Semiconductor quantum dots can exhibit near-ideal single-photon emission but this can be significantly degraded in on-chip geometries owing to nearby etche d surfaces. A long-proposed solution to improve the indistinguishablility is by using the Purcell effect to reduce the radiative lifetime. However, until now only modest Purcell enhancements have been observed. Here we use pulsed resonant excitation to eliminate slow relaxation paths, revealing a highly Purcell-shortened radiative lifetime (22.7 ps) in a waveguide-coupled quantum dot-photonic crystal cavity system. This leads to near-lifetime-limited single-photon emission which retains high indistinguishablility (93.9%) on a timescale in which 20 photons may be emitted. Nearly background-free pulsed resonance fluorescence is achieved under $pi$-pulse excitation, enabling demonstration of an on-chip, on-demand single-photon source with very high potential repetition rates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا