ﻻ يوجد ملخص باللغة العربية
Magneto-optical effect refers to a rotation of polarization plane, which has been widely studied in traditional ferromagnetic metal and insulator films and scarcely in two-dimensional layered materials. Here we uncover a new nonreciprocal magneto-inelastic light scattering effect in ferromagnetic few-layer CrI3. We observed a rotation of the polarization plane of inelastic light scattering between -20o and +60o that are tunable by an out-of-plane magnetic field from -2.5 to 2.5 T. It is experimentally observed that the degree of polarization can be magnetically manipulated between -20% and 85%. This work raises a new magneto-optical phenomenon and could create opportunities of applying 2D ferromagnetic materials in Raman lasing, topological photonics, and magneto-optical modulator for information transport and storage.
Long-range magnetic orders in atomically thin ferromagnetic CrI3 give rise to new fascinating physics and application perspectives. The physical properties of two-dimensional (2D) ferromagnetism CrI3 are significantly influenced by interlayer spacing
Probing optical excitations with high resolution is important for understanding their dynamics and controlling their interaction with other photonic elements. This can be done using state-of-the-art electron microscopes, which provide the means to sa
Reducing the lateral scale of two-dimensional (2D) materials to one-dimensional (1D) has attracted substantial research interest not only to achieve competitive electronic device applications but also for the exploration of fundamental physical prope
The optical properties of the two-dimensional (2D) crystals are dominated by tightly bound electron-hole pairs (excitons) and lattice vibration modes (phonons). The exciton-phonon interaction is fundamentally important to understand the optical prope
Dielectric study on Ca3Mn2O7 features relaxor-like segmented dynamics below the antiferromagnetic ordering. Dipolar relaxations of different origin are spectrally resolved exhibiting distinct H-field alterations. This identifies their allegiance to d