ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved algorithm to determine 3-colorability of graphs with the minimum degree at least 7

104   0   0.0 ( 0 )
 نشر من قبل Sogol Jahanbekam
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $G$ be an $n$-vertex graph with the maximum degree $Delta$ and the minimum degree $delta$. We give algorithms with complexity $O(1.3158^{n-0.7~Delta(G)})$ and $O(1.32^{n-0.73~Delta(G)})$ that determines if $G$ is 3-colorable, when $delta(G)geq 8$ and $delta(G)geq 7$, respectively.



قيم البحث

اقرأ أيضاً

Let $G$ be an $n$-vertex graph and let $L:V(G)rightarrow P({1,2,3})$ be a list assignment over the vertices of $G$, where each vertex with list of size 3 and of degree at most 5 has at least three neighbors with lists of size 2. We can determine $L$- choosability of $G$ in $O(1.3196^{n_3+.5n_2})$ time, where $n_i$ is the number of vertices in $G$ with list of size $i$ for $iin {2,3}$. As a corollary, we conclude that the 3-colorability of any graph $G$ with minimum degree at least 6 can be determined in $O(1.3196^{n-.5Delta(G)})$ time.
The $k$-deck of a graph is the multiset of its subgraphs induced by $k$ vertices. A graph or graph property is $l$-reconstructible if it is determined by the deck of subgraphs obtained by deleting $l$ vertices. We show that the degree list of an $n$- vertex graph is $3$-reconstructible when $nge7$, and the threshold on $n$ is sharp. Using this result, we show that when $nge7$ the $(n-3)$-deck also determines whether an $n$-vertex graph is connected; this is also sharp. These results extend the results of Chernyak and Manvel, respectively, that the degree list and connectedness are $2$-reconstructible when $nge6$, which are also sharp.
The degree-based entropy of a graph is defined as the Shannon entropy based on the information functional that associates the vertices of the graph with the corresponding degrees. In this paper, we study extremal problems of finding the graphs attain ing the minimum degree-based graph entropy among graphs and bipartite graphs with a given number of vertices and edges. We characterize the unique extremal graph achieving the minimum value among graphs with a given number of vertices and edges and present a lower bound for the degree-based entropy of bipartite graphs and characterize all the extremal graphs which achieve the lower bound. This implies the known result due to Cao et al. (2014) that the star attains the minimum value of the degree-based entropy among trees with a given number of vertices.
Koolen et al. showed that if a graph with smallest eigenvalue at least $-3$ has large minimal valency, then it is $2$-integrable. In this paper, we will focus on the sesqui-regular graphs with smallest eigenvalue at least $-3$ and study their integrability.
Let $G$ be a simple graph with maximum degree $Delta(G)$. A subgraph $H$ of $G$ is overfull if $|E(H)|>Delta(G)lfloor |V(H)|/2 rfloor$. Chetwynd and Hilton in 1985 conjectured that a graph $G$ with $Delta(G)>|V(G)|/3$ has chromatic index $Delta(G)$ i f and only if $G$ contains no overfull subgraph. The 1-factorization conjecture is a special case of this overfull conjecture, which states that for even $n$, every regular $n$-vertex graph with degree at least about $n/2$ has a 1-factorization and was confirmed for large graphs in 2014. Supporting the overfull conjecture as well as generalizing the 1-factorization conjecture in an asymptotic way, in this paper, we show that for any given $0<varepsilon <1$, there exists a positive integer $n_0$ such that the following statement holds: if $G$ is a graph on $2nge n_0$ vertices with minimum degree at least $(1+varepsilon)n$, then $G$ has chromatic index $Delta(G)$ if and only if $G$ contains no overfull subgraph.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا