ترغب بنشر مسار تعليمي؟ اضغط هنا

Parallel entangling gate operations and two-way quantum communication in spin chains

58   0   0.0 ( 0 )
 نشر من قبل Rozhin Yousefjani
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The power of a quantum circuit is determined through the number of two-qubit entangling gates that can be performed within the coherence time of the system. In the absence of parallel quantum gate operations, this would make the quantum simulators limited to shallow circuits. Here, we propose a protocol to parallelize the implementation of two-qubit entangling gates between multiple users which are spatially separated, and use a commonly shared spin chain data-bus. Our protocol works through inducing effective interaction between each pair of qubits without disturbing the others, therefore, it increases the rate of gate operations without creating crosstalk. This is achieved by tuning the Hamiltonian parameters appropriately, described in the form of two different strategies. The tuning of the parameters makes different bilocalized eigenstates responsible for the realization of the entangling gates between different pairs of distant qubits. Remarkably, the performance of our protocol is robust against increasing the length of the data-bus and the number of users. Moreover, we show that this protocol can tolerate various types of disorders and is applicable in the context of superconductor-based systems. The proposed protocol can serve for realizing two-way quantum communication.



قيم البحث

اقرأ أيضاً

We consider communication between two parties using a bipartite quantum operation, which constitutes the most general quantum mechanical model of two-party communication. We primarily focus on the simultaneous forward and backward communication of cl assical messages. For the case in which the two parties share unlimited prior entanglement, we give inner and outer bounds on the achievable rate region that generalize classical results due to Shannon. In particular, using a protocol of Bennett, Harrow, Leung, and Smolin, we give a one-shot expression in terms of the Holevo information for the entanglement-assisted one-way capacity of a two-way quantum channel. As applications, we rederive two known additivity results for one-way channel capacities: the entanglement-assisted capacity of a general one-way channel, and the unassisted capacity of an entanglement-breaking one-way channel.
131 - C.Y.Hu , W.J.Munro , J.L.OBrien 2009
Semiconductor quantum dots (known as artificial atoms) hold great promise for solid-state quantum networks and quantum computers. To realize a quantum network, it is crucial to achieve light-matter entanglement and coherent quantum-state transfer bet ween light and matter. Here we present a robust photon-spin entangling gate with high fidelity and high efficiency (up to 50 percent) using a charged quantum dot in a double-sided microcavity. This gate is based on giant circular birefringence induced by a single electron spin, and functions as an optical circular polariser which allows only one circularly-polarized component of light to be transmitted depending on the electron spin states. We show this gate can be used for single-shot quantum non-demolition measurement of a single electron spin, and can work as an entanglement filter to make a photon-spin entangler, spin entangler and photon entangler as well as a photon-spin quantum interface. This work allows us to make all building blocks for solid-state quantum networks with single photons and quantum-dot spins.
We derive an analytical approximate solution of the time-dependent state vector in terms of material Bell states and coherent states of the field for a generalized two-atom Tavis-Cummings model with nonlinear intensity dependent matter-field interact ion. Using this solution, we obtain simple expressions for the atomic concurrence and purity in order to study the entanglement in the system at specific interaction times. We show how to implement entangling atomic operations through measurement of the field. We illustrate how these operations can lead to a complete Bell measurement. Furthermore, when considering two orthogonal states of the field as levels of a third qubit, it is possible to implement a unitary three-qubit gate capable of generating authentic tripartite entangled states such as the Greenberger-Horne-Zeilinger (GHZ) state and the W-state. As an example of the generic model, we present an ion-trap setting employing the quantized mode of the center of mass motion instead the photonic field, showing that the implementation of realistic entangling operations from intrinsic nonlinear matter-field interactions is indeed possible.
We propose $mathrm{SQiSW}$, the matrix square root of the standard $mathrm{iSWAP}$ gate, as a native two-qubit gate for superconducting quantum computing. We show numerically that it has potential for an ultra-high fidelity implementation as its gate time is half of that of $mathrm{iSWAP}$, but at the same time it possesses powerful information processing capabilities in both the compilation of arbitrary two-qubit gates and the generation of large-scale entangled W-like states. Even though it is half of an $mathrm{iSWAP}$ gate, its capabilities surprisingly rival and even surpass that of $mathrm{iSWAP}$ or other incumbent native two-qubit gates such as $mathrm{CNOT}$. To complete the case for its candidacy, we propose a detailed compilation, calibration and benchmarking framework. In particular, we propose a variant of randomized benchmarking called interleaved fully randomized benchmarking (iFRB) which provides a general and unified solution for benchmarking non-Clifford gates such as $mathrm{SQiSW}$. For the reasons above, we believe that the $mathrm{SQiSW}$ gate is worth further study and consideration as a native two-qubit gate for both fault-tolerant and noisy intermediate-scale quantum (NISQ) computation.
In this contribution we consider an advantageous building block with potential for various quantum applications: a device based on coupled spins capable of generating and sharing out an entangled pair of qubits. Our model device is a dimerised spin c hain with three weakly coupled embedded sites (defects). Three different entangling protocols were proposed for this chain in [1] and [2], one producing a Cluster state and two generating a Bell state, depending on the initial state injection. Here we compare the robustness of such protocols as quantum entangling gates against different types of fabrication (static energy fluctuations) and operation (timing injection delays) errors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا