ﻻ يوجد ملخص باللغة العربية
Surrogate models for partial-differential equations are widely used in the design of meta-materials to rapidly evaluate the behavior of composable components. However, the training cost of accurate surrogates by machine learning can rapidly increase with the number of variables. For photonic-device models, we find that this training becomes especially challenging as design regions grow larger than the optical wavelength. We present an active learning algorithm that reduces the number of training points by more than an order of magnitude for a neural-network surrogate model of optical-surface components compared to random samples. Results show that the surrogate evaluation is over two orders of magnitude faster than a direct solve, and we demonstrate how this can be exploited to accelerate large-scale engineering optimization.
A special class of anisotropic media, hyperbolic metamaterials and metasurfaces (HMMs), has attracted much attention in recent years due to its unique abilities to manipulate and engineer electromagnetic waves on the subwavelength scale. Because all
This paper proposes a technique for training a neural network by minimizing a surrogate loss that approximates the target evaluation metric, which may be non-differentiable. The surrogate is learned via a deep embedding where the Euclidean distance b
Learning to locomote is one of the most common tasks in physics-based animation and deep reinforcement learning (RL). A learned policy is the product of the problem to be solved, as embodied by the RL environment, and the RL algorithm. While enormous
The ability to manipulate the electric-field vector of broadband terahertz waves is essential for applications of terahertz technologies in many areas, and can open up new possibilities for nonlinear terahertz spectroscopy and coherent control. Here,
Active Learning (AL) techniques aim to minimize the training data required to train a model for a given task. Pool-based AL techniques start with a small initial labeled pool and then iteratively pick batches of the most informative samples for label