ﻻ يوجد ملخص باللغة العربية
Wireless energy transfer (WET) is a green enabler of low-power Internet of Things (IoT). Therein, traditional optimization schemes relying on full channel state information (CSI) are often too costly to implement due to excessive energy consumption and high processing complexity. This letter proposes a simple, yet effective, energy beamforming scheme that allows a multi-antenna power beacon (PB) to fairly power a set of IoT devices by only relying on the first-order statistics of the channels. In addition to low complexity, the proposed scheme performs favorably as compared to benchmarking schemes and its performance improves as the number of PBs antennas increases. Finally, it is shown that further performance improvement can be achieved through proper angular rotations of the PB.
This paper introduces a novel approach of utilizing the reconfigurable intelligent surface (RIS) for joint data modulation and signal beamforming in a multi-user downlink cellular network by leveraging the idea of backscatter communication. We presen
Radio frequency (RF) wireless energy transfer (WET) is a key technology that may allow seamlessly powering future massive low-energy Internet of Things (IoT) networks. To enable efficient massive WET, channel state information (CSI)-limited/free mult
In this paper, a novel intelligent reflecting surface (IRS)-assisted wireless powered communication network (WPCN) architecture is proposed for low-power Internet-of-Things (IoT) devices, where the IRS is exploited to improve the performance of WPCN
Intelligent reflecting surfaces (IRSs) are revolutionary enablers for next-generation wireless communication networks, with the ability to customize the radio propagation environment. To fully exploit the potential of IRS-assisted wireless systems, r
This paper presents the first Network-Coded Multiple Access (NCMA) system with multiple users adopting different signal modulations, referred to as rate-diverse NCMA. A distinguishing feature of NCMA is the joint use of physical-layer network coding