ﻻ يوجد ملخص باللغة العربية
Conventional methods for object detection usually require substantial amounts of training data and annotated bounding boxes. If there are only a few training data and annotations, the object detectors easily overfit and fail to generalize. It exposes the practical weakness of the object detectors. On the other hand, human can easily master new reasoning rules with only a few demonstrations using previously learned knowledge. In this paper, we introduce a few-shot object detection via knowledge transfer, which aims to detect objects from a few training examples. Central to our method is prototypical knowledge transfer with an attached meta-learner. The meta-learner takes support set images that include the few examples of the novel categories and base categories, and predicts prototypes that represent each category as a vector. Then, the prototypes reweight each RoI (Region-of-Interest) feature vector from a query image to remodels R-CNN predictor heads. To facilitate the remodeling process, we predict the prototypes under a graph structure, which propagates information of the correlated base categories to the novel categories with explicit guidance of prior knowledge that represents correlations among categories. Extensive experiments on the PASCAL VOC dataset verifies the effectiveness of the proposed method.
Expensive bounding-box annotations have limited the development of object detection task. Thus, it is necessary to focus on more challenging task of few-shot object detection. It requires the detector to recognize objects of novel classes with only a
We introduce Few-Shot Video Object Detection (FSVOD) with three important contributions: 1) a large-scale video dataset FSVOD-500 comprising of 500 classes with class-balanced videos in each category for few-shot learning; 2) a novel Tube Proposal Ne
Few-shot object detection is a challenging but realistic scenario, where only a few annotated training images are available for training detectors. A popular approach to handle this problem is transfer learning, i.e., fine-tuning a detector pretraine
Domain shift is a well known problem where a model trained on a particular domain (source) does not perform well when exposed to samples from a different domain (target). Unsupervised methods that can adapt to domain shift are highly desirable as the
Learning to detect novel objects from few annotated examples is of great practical importance. A particularly challenging yet common regime occurs when there are extremely limited examples (less than three). One critical factor in improving few-shot