We theoretically study the angular displacements estimation based on a modified Mach-Zehnder interferometer (MZI), in which two optical parametric amplifiers (PAs) are introduced into two arms of the standard MZI, respectively. The employment of PAs can both squeeze the shot noise and amplify the photon number inside the interferometer. When the unknown angular displacements are introduced to both arms, we derive the multiparameter quantum Cramer-Rao bound (QCRB) using the quantum Fisher information matrix approach, and the bound of angular displacements difference between the two arms is compared with the sensitivity of angular displacement using the intensity detection. On the other hand, in the case where the unknown angular displacement is in only one arm, we give the sensitivity of angular displacement using the method of homodyne detection. It can surpass the standard quantum limit (SQL) and approach the single parameter QCRB. Finally, the effect of photon losses on sensitivity is discussed.