ﻻ يوجد ملخص باللغة العربية
$rm Sr_2IrO_4$ is an archetypal spin-orbit-coupled Mott insulator and has been extensively studied in part because of a wide range of predicted novel states. Limited experimental characterization of these states thus far brings to light the extraordinary susceptibility of the physical properties to the lattice, particularly, the Ir-O-Ir bond angle. Here, we report a newly observed microscopic rotation of the IrO$_6$ octahedra below 50~K measured by single crystal neutron diffraction. This sharp lattice anomaly provides keys to understanding the anomalous low-temperature physics and a direct confirmation of a crucial role that the Ir-O-Ir bond angle plays in determining the ground state. Indeed, as also demonstrated in this study, applied electric current readily weakens the antiferromagnetic order via the straightening of the Ir-O-Ir bond angle, highlighting that even slight change in the local structure can disproportionately affect the physical properties in the spin-orbit-coupled system.
Spin-orbit entangled magnetic dipoles, often referred to as pseudospins, provide a new avenue to explore novel magnetism inconceivable in the weak spin-orbit coupling limit, but the nature of their low-energy interactions remains to be understood. We
We have used Raman scattering to investigate the magnetic excitations and lattice dynamics in the prototypical spin-orbit Mott insulators Sr2IrO4 and Sr3Ir2O7. Both compounds exhibit pronounced two-magnon Raman scattering features with different ener
Using a mixed-ligand synthetic scheme, we create a family of quasi-two-dimensional antiferromagnets, namely, [Cu(HF$_2$)(pyz)$_2$]ClO$_4$ [pyz = pyrazine], [Cu$L_2$(pyz)$_2$](ClO$_4$)$_2$ [$L$ = pyO = pyridine-N-oxide and 4-phpyO = 4-phenylpyridine-N
Over the last few years, Sr$_2$IrO$_4$, a single-layer member of the Ruddlesden-Popper series iridates, has received much attention as a close analog of cuprate high-temperature superconductors. Although there is not yet firm evidence for superconduc
We report on the epitaxial strain-driven electronic and antiferromagnetic modulations of a pseudospin-half square lattice realized in superlattices of (SrIrO3)1/(SrTiO3)1. With increasing compressive strain, we find the low-temperature insulating beh