ترغب بنشر مسار تعليمي؟ اضغط هنا

A Background-Agnostic Framework with Adversarial Training for Abnormal Event Detection in Video

70   0   0.0 ( 0 )
 نشر من قبل Radu Tudor Ionescu
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Abnormal event detection in video is a complex computer vision problem that has attracted significant attention in recent years. The complexity of the task arises from the commonly-adopted definition of an abnormal event, that is, a rarely occurring event that typically depends on the surrounding context. Following the standard formulation of abnormal event detection as outlier detection, we propose a background-agnostic framework that learns from training videos containing only normal events. Our framework is composed of an object detector, a set of appearance and motion auto-encoders, and a set of classifiers. Since our framework only looks at object detections, it can be applied to different scenes, provided that normal events are defined identically across scenes and that the single main factor of variation is the background. To overcome the lack of abnormal data during training, we propose an adversarial learning strategy for the auto-encoders. We create a scene-agnostic set of out-of-domain pseudo-abnormal examples, which are correctly reconstructed by the auto-encoders before applying gradient ascent on the pseudo-abnormal examples. We further utilize the pseudo-abnormal examples to serve as abnormal examples when training appearance-based and motion-based binary classifiers to discriminate between normal and abnormal latent features and reconstructions. We compare our framework with the state-of-the-art methods on four benchmark data sets, using various evaluation metrics. Compared to existing methods, the empirical results indicate that our approach achieves favorable performance on all data sets. In addition, we provide region-based and track-based annotations for two large-scale abnormal event detection data sets from the literature, namely ShanghaiTech and Subway.



قيم البحث

اقرأ أيضاً

206 - Siqi Wang , Guang Yu , Zhiping Cai 2021
Video abnormal event detection (VAD) is a vital semi-supervised task that requires learning with only roughly labeled normal videos, as anomalies are often practically unavailable. Although deep neural networks (DNNs) enable great progress in VAD, ex isting solutions typically suffer from two issues: (1) The precise and comprehensive localization of video events is ignored. (2) The video semantics and temporal context are under-explored. To address those issues, we are motivated by the prevalent cloze test in education and propose a novel approach named visual cloze completion (VCC), which performs VAD by learning to complete visual cloze tests (VCTs). Specifically, VCC first localizes each video event and encloses it into a spatio-temporal cube (STC). To achieve both precise and comprehensive localization, appearance and motion are used as mutually complementary cues to mark the object region associated with each video event. For each marked region, a normalized patch sequence is extracted from temporally adjacent frames and stacked into the STC. By comparing each patch and the patch sequence of a STC to a visual word and sentence respectively, we can deliberately erase a certain word (patch) to yield a VCT. DNNs are then trained to infer the erased patch by video semantics, so as to complete the VCT. To fully exploit the temporal context, each patch in STC is alternatively erased to create multiple VCTs, and the erased patchs optical flow is also inferred to integrate richer motion clues. Meanwhile, a new DNN architecture is designed as a model-level solution to utilize video semantics and temporal context. Extensive experiments demonstrate that VCC achieves state-of-the-art VAD performance. Our codes and results are open at url{https://github.com/yuguangnudt/VEC_VAD/tree/VCC}
Weakly supervised video anomaly detection (WS-VAD) is to distinguish anomalies from normal events based on discriminative representations. Most existing works are limited in insufficient video representations. In this work, we develop a multiple inst ance self-training framework (MIST)to efficiently refine task-specific discriminative representations with only video-level annotations. In particular, MIST is composed of 1) a multiple instance pseudo label generator, which adapts a sparse continuous sampling strategy to produce more reliable clip-level pseudo labels, and 2) a self-guided attention boosted feature encoder that aims to automatically focus on anomalous regions in frames while extracting task-specific representations. Moreover, we adopt a self-training scheme to optimize both components and finally obtain a task-specific feature encoder. Extensive experiments on two public datasets demonstrate the efficacy of our method, and our method performs comparably to or even better than existing supervised and weakly supervised methods, specifically obtaining a frame-level AUC 94.83% on ShanghaiTech.
In this paper, we propose a discriminative video representation for event detection over a large scale video dataset when only limited hardware resources are available. The focus of this paper is to effectively leverage deep Convolutional Neural Netw orks (CNNs) to advance event detection, where only frame level static descriptors can be extracted by the existing CNN toolkit. This paper makes two contributions to the inference of CNN video representation. First, while average pooling and max pooling have long been the standard approaches to aggregating frame level static features, we show that performance can be significantly improved by taking advantage of an appropriate encoding method. Second, we propose using a set of latent concept descriptors as the frame descriptor, which enriches visual information while keeping it computationally affordable. The integration of the two contributions results in a new state-of-the-art performance in event detection over the largest video datasets. Compared to improved Dense Trajectories, which has been recognized as the best video representation for event detection, our new representation improves the Mean Average Precision (mAP) from 27.6% to 36.8% for the TRECVID MEDTest 14 dataset and from 34.0% to 44.6% for the TRECVID MEDTest 13 dataset. This work is the core part of the winning solution of our CMU-Informedia team in TRECVID MED 2014 competition.
In this paper, we propose a learning-based approach for denoising raw videos captured under low lighting conditions. We propose to do this by first explicitly aligning the neighboring frames to the current frame using a convolutional neural network ( CNN). We then fuse the registered frames using another CNN to obtain the final denoised frame. To avoid directly aligning the temporally distant frames, we perform the two processes of alignment and fusion in multiple stages. Specifically, at each stage, we perform the denoising process on three consecutive input frames to generate the intermediate denoised frames which are then passed as the input to the next stage. By performing the process in multiple stages, we can effectively utilize the information of neighboring frames without directly aligning the temporally distant frames. We train our multi-stage system using an adversarial loss with a conditional discriminator. Specifically, we condition the discriminator on a soft gradient mask to prevent introducing high-frequency artifacts in smooth regions. We show that our system is able to produce temporally coherent videos with realistic details. Furthermore, we demonstrate through extensive experiments that our approach outperforms state-of-the-art image and video denoising methods both numerically and visually.
Event-specific concepts are the semantic concepts designed for the events of interest, which can be used as a mid-level representation of complex events in videos. Existing methods only focus on defining event-specific concepts for a small number of predefined events, but cannot handle novel unseen events. This motivates us to build a large scale event-specific concept library that covers as many real-world events and their concepts as possible. Specifically, we choose WikiHow, an online forum containing a large number of how-to articles on human daily life events. We perform a coarse-to-fine event discovery process and discover 500 events from WikiHow articles. Then we use each event name as query to search YouTube and discover event-specific concepts from the tags of returned videos. After an automatic filter process, we end up with 95,321 videos and 4,490 concepts. We train a Convolutional Neural Network (CNN) model on the 95,321 videos over the 500 events, and use the model to extract deep learning feature from video content. With the learned deep learning feature, we train 4,490 binary SVM classifiers as the event-specific concept library. The concepts and events are further organized in a hierarchical structure defined by WikiHow, and the resultant concept library is called EventNet. Finally, the EventNet concept library is used to generate concept based representation of event videos. To the best of our knowledge, EventNet represents the first video event ontology that organizes events and their concepts into a semantic structure. It offers great potential for event retrieval and browsing. Extensive experiments over the zero-shot event retrieval task when no training samples are available show that the EventNet concept library consistently and significantly outperforms the state-of-the-art (such as the 20K ImageNet concepts trained with CNN) by a large margin up to 207%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا