ترغب بنشر مسار تعليمي؟ اضغط هنا

Luminous Blue Variable candidates in M31

93   0   0.0 ( 0 )
 نشر من قبل Arkadiy Sarkisyan
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study five Luminous Blue Variable (LBV) candidates in the Andromeda galaxy and one more (MN112) in the Milky Way. We obtain the same-epoch near-infrared (NIR) and optical spectra on the 3.5-meter telescope at the Apache Point Observatory and on the 6-meter telescope of the SAO RAS. The candidates show typical LBV features in their spectra: broad and strong hydrogen lines, HeI, FeII, and [FeII] lines. We estimate the temperatures, reddening, radii and luminosities of the stars using their spectral energy distributions. Bolometric luminosities of the candidates are similar to those of known LBV stars in the Andromeda galaxy. One candidate, J004341.84+411112.0, demonstrates photometric variability (about 0.27 mag in V band), which allows us to classify it as a LBV. The star J004415.04+420156.2 shows characteristics typical for B[e]-supergiants. The star J004411.36+413257.2 is classified as FeII star. We confirm that the stars J004621.08+421308.2 and J004507.65+413740.8 are warm hypergiants. We for the first time obtain NIR spectrum of the Galactic LBV candidate MN112. We use both optical and NIR spectra of MN112 for comparison with similar stars in M31 and notice identical spectra and the same temperature in the J004341.84+411112.0. This allows us to confirm that MN112 is a LBV, which should show its brightness variability in longer time span observations.



قيم البحث

اقرأ أيضاً

We have found three new LBV candidates in the star-forming galaxy NGC 4736. They show typical well-known LBV spectra, broad and strong hydrogen lines, He I lines, many Fe II lines, and forbidden [Fe II] and [Fe III]. Using archival Hubble Space Teles cope and ground-based telescope data, we have estimated the bolometric magnitudes of these objects from -8.4 to -11.5, temperatures, and reddening. Source NGC 4736_1 (Mv = -10.2 +/- 0.1 mag) demonstrated variability between 2005 and 2018 as Delta V = 1.1 mag and Delta B = 0.82 mag, the object belongs to LBV stars. NGC 4736_2 (Mv < -8.6 mag) shows P Cyg profiles and its spectrum has changed from 2015 to 2018. The brightness variability of NGC 4736_2 is Delta V = 0.5 mag and Delta B = 0.4 mag. In NGC 4736_3 (Mv = -8.2 +/- 0.2 mag), we found strong nebular lines, broad wings of hydrogen; the brightness variation is only 0.2 mag. Therefore, the last two objects may reside to LBV candidates.
100 - Y. Solovyeva 2020
We search for LBV stars in galaxies outside the Local Group. Here we present a study of two bright $Halpha$ sources in the NGC 247 galaxy. Object j004703.27-204708.4 ($M_V=-9.08 pm 0.15^m$) shows the spectral lines typical for well-studied LBV stars: broad and bright emission lines of hydrogen and helium He I with P Cyg profiles, emission lines of iron Fe II, silicon Si II, nitrogen N II and carbon C II, forbidden iron [Fe II] and nitrogen [N II] lines. The variability of the object is $Delta B = 0.74pm0.09^m$ and $Delta V = 0.88pm0.09^m$, which makes it reliable LBV candidate. The star j004702.18-204739.93 ($M_V=-9.66 pm 0.23^m$) shows many emission lines of iron Fe II, forbidden iron lines [Fe II], bright hydrogen lines with broad wings, and also forbidden lines of oxygen [O I] and calcium [Ca II] formed in the circumstellar matter. The study of the light curve of this star also did not reveal significant variations in brightness ($Delta V = 0.29pm0.09^m$). We obtained estimates of interstellar absorption, the photosphere temperature, as well as bolometric magnitudes $M_text{bol}=-10.5^{+0.5}_{-0.4}$ and $M_text{bol}=-10.8^{+0.5}_{-0.6}$, which corresponds to bolometric luminosities $log(L_text{bol}/L_{odot})=6.11^{+0.20}_{-0.16}$ and $6.24^{+0.20}_{-0.25}$ for j004703.27-204708.4 and j004702.18-204739.93 respectively. Thus, the object j004703.27-204708.4 remains a reliable LBV candidate, while the object j004702.18-204739.93 can be classified as B[e]-supergiant.
Context. Luminous Blue Variables (LBVs) are thought to be in a transitory phase between O stars on the main-sequence and the Wolf-Rayet stage. Recent studies suggest that they might be formed through binary interaction. Only a few are known in binary systems but their multiplicity fraction is uncertain. Aims. This study aims at deriving the binary fraction among the Galactic (confirmed and candidate) LBV population. We combine multi-epoch spectroscopy and long-baseline interferometry. Methods. We use cross-correlation to measure their radial velocities. We identify spectroscopic binaries through significant RV variability (larger than 35 km/s). We investigate the observational biases to establish the intrinsic binary fraction. We use CANDID to detect interferometric companions, derive their parameters and positions. Results. We derive an observed spectroscopic binary fraction of 26 %. Considering period and mass ratio ranges from Porb=1 to 1000 days, and q = 0.1-1.0, and a representative set of orbital parameter distributions, we find a bias-corrected binary fraction of 62%. From interferometry, we detect 14 companions out of 18 objects, providing a binary fraction of 78% at projected separations between 1 and 120 mas. From the derived primary diameters, and the distances of these objects, we measure for the first time the exact radii of Galactic LBVs to be between 100 and 650 Rsun, making unlikely to have short-period systems. Conclusions. This analysis shows that the binary fraction among the Galactic LBV population is large. If they form through single-star evolution, their orbit must be initially large. If they form through binary channel that implies that either massive stars in short binary systems must undergo a phase of fully non-conservative mass transfer to be able to sufficiently widen the orbit or that LBVs form through merging in initially binary or triple systems.
(abridged) A detailed study of the blue supergiant UIT005 (B2-2.5Ia+) in M33 is presented. The results of our quantitative spectral analysis indicate that the star is a very luminous, log(L/Lsun)~5.9 dex, and massive, M~50 Msun, object, showing a ver y high nitrogen-to-oxygen ratio in its surface (N/O~8, by mass). Based on the derived Mg and Si abundances, we argue that this high N/O ratio cannot be the result of an initial low O content due to its location on the disk of M33, known to present a steep metallicity gradient. In combination with the He abundance, the most plausible interpretation is that UIT005 is in an advanced stage of evolution, showing in its surface N enrichment and O depletion resulting from mixing with CNO processed material from the stellar interior. A comparison with the predictions of current stellar evolutionary models indicates that there are significant discrepancies, in particular with regard to the degree of chemical processing, with the models predicting a much lower degree of O depletion than observed. At the same time, the mass-loss rate derived in our analysis is an order of magnitude lower than the values considered in the evolutionary calculations. Based on a study of the surrounding stellar population and the nearby cluster NGC588, using WFPC2 photometry, we suggest that UIT005 could be in fact a runaway star from this cluster.
535 - C.-H. Lee , S. Seitz , M. Kodric 2014
We perform a study on the optical and infrared photometric properties of known luminous blue variables (LBVs) in M31 using the sample of LBV candidates from the Local Group Galaxy Survey (Massey et al. 2007). We find that M31 LBV candidates show phot ometric variability ranging from 0.375 to 1.576 magnitudes in rP1 during a three year time-span observed by the Pan-STARRS 1 Andromeda survey (PAndromeda). Their near-infrared colors also follow the distribution of Galactic LBVs as shown by Oksala et al. (2013). We use these features as selection criteria to search for unknown LBV candidates in M31. We thus devise a method to search for candidate LBVs using both optical color from the Local Group Galaxy Survey and infrared color from Two Micron All Sky Survey, as well as photometric variations observed by PAndromeda. We find four sources exhibiting common properties of known LBVs. These sources also exhibit UV emission as seen from GALEX, which is one of the previously adopted method to search for LBV candidates. The locations of the LBVs are well aligned withM31 spiral arms as seen in the UV light, suggesting they are evolved stars at young age given their high-mass nature. We compare these candidates with the latest Geneva evolutionary tracks, which show that our new M31 LBV candidates are massive evolved stars with an age of 10 to 100 million years.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا