ﻻ يوجد ملخص باللغة العربية
Improved monitoring and associated inferential tools to efficiently identify declining bird populations, particularly of rare or sparsely distributed species, is key to informed conservation and management across large spatio-temporal regions. We assess abundance trends for 106 bird species in a network of eight national park forests located within the northeast USA from 2006-2019 using a novel hierarchical model. We develop a multi-species, multi-region removal sampling model that shares information across species and parks to enable inference on rare species and sparsely sampled parks and to evaluate the effects of local forest structure. Trends in bird abundance over time varied widely across parks, but species showed similar trends within parks. Three parks (Acadia, Marsh-Billings-Rockefeller, and Morristown) decreased in bird abundance across all species, while three parks (Saratoga, Roosevelt-Vanderbilt, and Weir-Farm) increased in abundance. Bird abundance peaked at medium levels of basal area and high levels of percent forest and forest regeneration, with percent forest having the largest effect. Variation in these effects across parks could be a result of differences in forest structural stage and diversity. Our novel hierarchical model enables estimates of abundance at the network, park, guild, and species levels. We found large variation in abundance trends across parks but not across bird guilds, suggesting that local forest condition may have a broad and consistent effect on the entire bird community within a given park. Management should target the three parks with overall decreasing trends in bird abundance to further identify what specific factors are driving observed declines across the bird community. Understanding how bird communities respond to local forest structure and other stressors is crucial for informed and lasting management.
In birds, the link between parental care behaviour and prolactin release during incubation persists after hatching in altricial birds, but has never been precisely studied during the whole rearing period in precocial species, such as ducks. The prese
Whether what you see in Figure 1 is a flamingo or a bird, is the question we ask in this paper. While fine-grained visual classification (FGVC) strives to arrive at the former, for the majority of us non-experts just bird would probably suffice. The
Bird collisions with high-speed transport modes is a vital topic on vehicle safety and wildlife protection, especially when high-speed trains, with an average speed of 250km/h, have to run across the habitat of an endangered bird species. This paper
We evaluated the effectiveness of an automated bird sound identification system in a situation that emulates a realistic, typical application. We trained classification algorithms on a crowd-sourced collection of bird audio recording data and restric
Transformers-based models, such as BERT, have been one of the most successful deep learning models for NLP. Unfortunately, one of their core limitations is the quadratic dependency (mainly in terms of memory) on the sequence length due to their full