ﻻ يوجد ملخص باللغة العربية
The dynamics of nanosystems in solution contain a wealth of information with relevance for diverse fields ranging from materials science to biology and biomedical applications. When nanosystems are marked with fluorophores or strong scatterers, it is possible to track their position and reveal internal motion with high spatial and temporal resolution. However, markers can be toxic, expensive, or change the objects intrinsic properties. Here, we simultaneously measure dispersive frequency shifts of three transverse modes of a high-finesse microcavity to obtain the three-dimensional path of unlabeled SiO$_2$ nanospheres with $300$$mathrm{mu}$s temporal and down to $8$nm spatial resolution. This allows us to quantitatively determine properties such as the polarizability, hydrodynamic radius, and effective refractive index. The fiber-based cavity is integrated in a direct-laser-written microfluidic device that enables the precise control of the fluid with ultra-small sample volumes. Our approach enables quantitative nanomaterial characterization and the analysis of biomolecular motion at high bandwidth.
Confining a laser field between two high reflectivity mirrors of a high-finesse cavity can increase the probability of a given cavity photon to be scattered by an atom traversing the confined photon mode. This enhanced coupling between light and atom
We have demonstrated a 165 micron oblate spheroidal microcavity with free spectral range 383.7 GHz (3.06nm), resonance bandwidth 25 MHz (Q ~ 10^7) at 1550nm, and finesse F > 10^4. The highly oblate spheroidal dielectric microcavity combines very high
Ultrasensitive optical detection of nanometer-scaled particles is highly desirable for applications in early-stage diagnosis of human diseases, environmental monitoring, and homeland security, but remains extremely difficult due to ultralow polarizab
A theoretical study is carried out for the cavity cooling of a $Lambda$-type three level atom in a high-finesse optical cavity with a weakly driven field. Analytical expressions for the friction, diffusion coefficients and the equilibrium temperature
High-speed tracking of single particles is a gateway to understanding physical, chemical, and biological processes at the nanoscale. It is also a major experimental challenge, particularly for small, nanometer-scale particles. Although methods such a