ﻻ يوجد ملخص باللغة العربية
Luminosity is a measure of the colliding frequency between beam and target and it is a crucial parameter for the measurement of absolute values, such as reaction cross sections. In this paper, we make use of experimental data from the ESR storage ring to demonstrate that the luminosity can be precisely determined by modelling the measured Rutherford scattering distribution. The obtained results are in good agreement with an independent measurement based on the x-ray normalization method. Our new method provides an alternative way to precisely measure the luminosity in low-energy stored-beam configurations. This can be of great value in particular in dedicated low-energy storage rings where established methods are difficult or impossible to apply.
A method for the calculation of the luminosity for the proton-nucleus collisions based on the quasi-free proton-proton scattering is presented. As an example of application the integrated luminosity for the scattering of protons off the deuteron targ
Experimental analyses of moderate temperature nuclear gases produced in the violent collisions of 35 MeV/nucleon$^{64}$Zn projectiles with $^{92}$Mo and $^{197}$Au target nuclei reveal a large degree of alpha particle clustering at low densities. For
In a series of papers, cited in the main body of the paper below, detailed calculations have been presented which show that electromagnetic and weak interactions can induce low energy nuclear reactions to occur with observable rates for a variety of
We discuss a new method to extract neutrino signals in low energy experiments. In this scheme the symmetric nature of most backgrounds allows for direct cancellation from data. The application of this technique to the Palo Verde reactor neutrino osci
New results for the strength of the symmetry energy are presented which illustrate the complementary aspects encountered in reactions probing nuclear densities below and above saturation. A systematic study of isotopic effects in spectator fragmentat