ﻻ يوجد ملخص باللغة العربية
The query model (or black-box model) has attracted much attention from the communities of both classical and quantum computing. Usually, quantum advantages are revealed by presenting a quantum algorithm that has a better query complexity than its classical counterpart. For example, the well-known quantum algorithms including Deutsch-Jozsa algorithm, Simon algorithm and Grover algorithm all show a considerable advantage of quantum computing from the viewpoint of query complexity. Recently we have considered in (Phys. Rev. A. {bf 101}, 02232 (2020)) the problem: what functions can be computed by an exact one-query quantum algorithm? This problem has been addressed for total Boolean functions but still open for partial Boolean functions. Thus, in this paper we continue to characterize the computational power of exact one-query quantum algorithms for partial Boolean functions by giving several necessary and sufficient conditions. By these conditions, we construct some new functions that can be computed exactly by one-query quantum algorithms but have essential difference from the already known ones. Note that before our work, the known functions that can be computed by exact one-query quantum algorithms are all symmetric functions, whereas the ones constructed in this papers are generally asymmetric.
The quantum query models is one of the most important models in quantum computing. Several well-known quantum algorithms are captured by this model, including the Deutsch-Jozsa algorithm, the Simon algorithm, the Grover algorithm and others. In this
We provide two sufficient and necessary conditions to characterize any $n$-bit partial Boolean function with exact quantum 1-query complexity. Using the first characterization, we present all $n$-bit partial Boolean functions that depend on $n$ bits
We study the complexity of quantum query algorithms that make p queries in parallel in each timestep. This model is in part motivated by the fact that decoherence times of qubits are typically small, so it makes sense to parallelize quantum algorithm
In the exact quantum query model a successful algorithm must always output the correct function value. We investigate the function that is true if exactly $k$ or $l$ of the $n$ input bits given by an oracle are 1. We find an optimal algorithm (for so
Quantum span program algorithms for function evaluation commonly have reduced query complexity when promised that the input has a certain structure. We design a modified span program algorithm to show these speed-ups persist even without having a pro