ﻻ يوجد ملخص باللغة العربية
Based on the realistic nuclear force of the high-precision CD-Bonn potential, we have performed comprehensive calculations for neutron-rich calcium isotopes using the Gamow shell model (GSM) which includes resonance and continuum. The realistic GSM calculations produce well binding energies, one- and two-neutron separation energies, predicting that $^{57}$Ca is the heaviest bound odd isotope and $^{70}$Ca is the dripline nucleus. Resonant states are predicted, which provides useful information for future experiments on particle emissions in neutron-rich calcium isotopes. Shell evolutions in the calcium chain around neutron numbers textit{N} = 32, 34 and 40 are understood by calculating effective single-particle energies, the excitation energies of the first $2^+$ states and two-neutron separation energies. The calculations support shell closures at $^{52}$Ca (textit{N} = 32) and $^{54}$Ca (textit{N} = 34) but show a weakening of shell closure at $^{60}$Ca (textit{N} = 40). The possible shell closure at $^{70}$Ca (textit{N} = 50) is predicted.
The Gamow shell model has shown to efficiently describe weakly bound and unbound nuclear systems, as internucleon correlations and continuum coupling are both taken into account in this model. In the present work, we study neutron-dripline oxygen iso
The existence of multi-neutron systems has always been a debatable question. Indeed, both inter-nucleon correlations and a large continuum coupling occur in these states. We then employ the ab-initio no-core Gamow shell model to calculate the resonan
We study excited-state properties of neutron-rich calcium isotopes based on chiral two- and three-nucleon interactions. We first discuss the details of our many-body framework, investigate convergence properties, and for two-nucleon interactions benc
The advent of nucleon-nucleon potentials derived from chiral perturbation theory, as well as the so-called V-low-k approach to the renormalization of the strong short-range repulsion contained in the potentials, have brought renewed interest in reali
Low-lying excited states of the neutron-rich calcium isotopes $^{48-52}$Ca have been studied via $gamma$-ray spectroscopy following inverse-kinematics proton scattering on a liquid hydrogen target using the GRETINA $gamma$-ray tracking array. The ene