ﻻ يوجد ملخص باللغة العربية
We report on the production of cold, state-selected H$_2^+$ molecular ions in a linear RF trap. The ions are produced by (3+1) resonance-enhanced multi-photon ionisation (REMPI) of H$_2$, and sympathetically cooled by laser-cooled Be$^+$ ions. After demonstrating and characterizing the REMPI process, we use photodissociation by a deep UV laser at 213~nm to verify the high vibrational purity of the produced H$_2^+$ ion samples. Moreover, the large difference between the photodissociation efficiencies of ions created in the $v=0$ and $v=1$ levels provides a way to detect a $v=0 to 1$ transition. These results pave the way towards high-resolution vibrational spectroscopy of H$_2^+$ for fundamental metrology applications.
A simple method to control molecular translation with a chemical reaction is demonstrated. Slow NO molecules have been produced by partially canceling the molecular beam velocity of NO$_2$ with the recoil velocity of the NO photofragment. The NO$_2$
Multiphoton ionization of sodium by femtosecond laser pulses of 800 nm wavelength in the range of laser peak intensities entering over-the-barrier ionization domain is studied. Photoelectron momentum distributions and the energy spectra are determine
We use (1+1$$) resonance-enhanced multiphoton photodissociation (REMPD) to detect the population in individual rovibronic states of trapped HfF$^+$ with a single-shot absolute efficiency of 18%, which is over 200 times better than that obtained with
Isolating neutral and charged particles from the environment is essential in precision experiments. For decades, this has been achieved by trapping ions with radio-frequency (rf) fields and neutral particles with optical fields. Recently, trapping of
Processes that break molecular bonds are typically observed with molecules occupying a mixture of quantum states and successfully described with quasiclassical models, while a few studies have explored the distinctly quantum mechanical low-energy reg