ﻻ يوجد ملخص باللغة العربية
The Fast Blue Optical Transient (FBOT) ATLAS18qqn (AT2018cow) has a light curve as bright as superluminous supernovae but rises and falls much faster. We model this light curve by circumstellar interaction of a pulsational pair-instability (PPI) supernova (SN) model based on our PPISN models studied in previous work. We focus on the 42 $M_odot$ He star (core of a 80 $M_{odot}$ star) which has circumstellar matter of mass 0.50 $M_odot$. With the parameterized mass cut and the kinetic energy of explosion $E$, we perform hydrodynamical calculations of nucleosynthesis and optical light curves of PPISN models. The optical light curve of the first $sim$ 20 days of AT2018cow is well-reproduced by the shock heating of circumstellar matter for the $42 ~M_{odot}$ He star with $E = 5 times 10^{51}$ erg. After day 20, the light curve is reproduced by the radioactive decay of 0.6 $M_odot$ $^{56}$Co, which is a decay product of $^{56}$Ni in the explosion. We also examine how the light curve shape depends on the various model parameters, such as CSM structure and composition. We also discuss (1) other possible energy sources and their constraints, (2) origin of observed high-energy radiation, and (3) how our result depends on the radiative transfer codes. Based on our successful model for AT2018cow and the model for SLSN with the CSM mass as large as $20 ~M_odot)$, we propose the working hypothesis that PPISN produces SLSNe if CSM is massive enough and FBOTs if CSM is less than $sim 1 ~M_odot$.
AT2018cow is a unique transient that stands out due to its relatively fast light-curve, high peak bolometric luminosity, and blue color. These properties distinguish it from typical radioactively powered core-collapse supernovae (SNe). Instead, the c
The discovery of SN 2018gep (ZTF18abukavn) challenged our understanding of the late-phase evolution of massive stars and their supernovae (SNe). The fast rise in luminosity of this SN (spectroscopically classified as a broad-lined Type Ic SN), indica
In certain mass ranges, massive stars can undergo a violent pulsation triggered by the electron/positron pair instability that ejects matter, but does not totally disrupt the star. After one or more of these pulsations, such stars are expected to und
We present our photometric and spectroscopic observations on the peculiar transient AT2018cow. The multi-band photometry covers from peak to $sim$70 days and the spectroscopy ranges from 5 to $sim$50 days. The rapid rise ($t_{mathrm{r}}$$lesssim$2.9
The interaction of a SN ejecta with a pre-existing circumstellar material (CSM) is one of the most promising energy sources for a variety of optical transients. Recently, a semi-analytic method developed by Chatzopoulos et al. (2012, hereafter CWV12)