ترغب بنشر مسار تعليمي؟ اضغط هنا

Tuning the electronic properties of hydrogen passivated C3N nanoribbons through van der Waals stacking

74   0   0.0 ( 0 )
 نشر من قبل Liu Jia Liu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The two-dimensional (2D) C3N has emerged as a material with promising applications in high performance device owing to its intrinsic bandgap and tunable electronic properties. Although there are several reports about the bandgap tuning of C3N via stacking or forming nanoribbon, bandgap modulation of bilayer C3N nanoribbons (C3NNRs) with various edge structures is still far from well understood. Here, based on extensive first-principles calculations, we demonstrated the effective bandgap engineering of C3N by cutting it into hydrogen passivated C3NNRs and stacking them into bilayer heterostructures. It was found that armchair (AC) C3NNRs with three types of edge structures are all semiconductors, while only zigzag (ZZ) C3NNRs with edges composed of both C and N atoms (ZZ-CN/CN) are semiconductors. The bandgaps of all semiconducting C3NNRs are larger than that of C3N nanosheet. More interestingly, AC-C3NNRs with CN/CN edges (AC-CN/CN) possess direct bandgap while ZZ-CN/CN have indirect bandgap. Compared with the monolayer C3NNR, the bandgaps of bilayer C3NNRs can be greatly modulated via different stacking orders and edge structures, varying from 0.43 eV for ZZ-CN/CN with AB-stacking to 0.04 eV for AC-CN/CN with AA-stacking. Particularly, transition from direct to indirect bandgap was observed in the bilayer AC-CN/CN heterostructure with AA-stacking, and the indirect-to-direct transition was found in the bilayer ZZ-CN/CN with AB-stacking. This work provides insights into the effective bandgap engineering of C3N and offers a new opportunity for its applications in nano-electronics and optoelectronic devices.



قيم البحث

اقرأ أيضاً

Silicene is a promising 2D Dirac material as a building block for van der Waals heterostructures (vdWHs). Here we investigate the electronic properties of hexagonal boron nitride/silicene (BN/Si) vdWHs using first-principles calculations. We calculat e the energy band structures of BN/Si/BN heterostructures with different rotation angles and find that the electronic properties of silicene are retained and protected robustly by the BN layers. In BN/Si/BN/Si/BN heterostructure, we find that the band structure near the Fermi energy is sensitive to the stacking configurations of the silicene layers due to interlayer coupling. The coupling is reduced by increasing the number of BN layers between the silicene layers and becomes negligible in BN/Si/(BN)3/Si/BN. In (BN)n/Si superlattices, the band structure undergoes a conversion from Dirac lines to Dirac points by increasing the number of BN layers between the silicene layers. Calculations of silicene sandwiched by other 2D materials reveal that silicene sandwiched by low-carbon-doped boron nitride or HfO2 is semiconducting.
In van der Waals heterostructures, the periodic potential from the Moire superlattice can be used as a control knob to modulate the electronic structure of the constituent materials. Here we present a nanoscale angle-resolved photoemission spectrosco py (Nano-ARPES) study of transferred graphene/h-BN heterostructures with two different stacking angles of 2.4{deg} and 4.3{deg} respectively. Our measurements reveal six replicas of graphene Dirac cones at the superlattice Brillouin zone (SBZ) centers. The size of the SBZ and its relative rotation angle to the graphene BZ are in good agreement with Moire superlattice period extracted from atomic force microscopy (AFM) measurements. Comparison to epitaxial graphene/h-BN with 0{deg} stacking angles suggests that the interaction between graphene and h-BN decreases with increasing stacking angle.
Heterostructures of van der Waals bonded layered materials offer unique means to tailor dielectric screening with atomic-layer precision, opening a fertile field of fundamental research. The optical analyses used so far have relied on interband spect roscopy. Here we demonstrate how a capping layer of hexagonal boron nitride (hBN) renormalizes the internal structure of excitons in a WSe$_2$ monolayer using intraband transitions. Ultrabroadband terahertz probes sensitively map out the full complex-valued mid-infrared conductivity of the heterostructure after optical injection of $1s$ A excitons. This approach allows us to trace the energies and linewidths of the atom-like $1s$-$2p$ transition of optically bright and dark excitons as well as the densities of these quasiparticles. The fundamental excitonic resonance red shifts and narrows in the WSe$_2$/hBN heterostructure compared to the bare monolayer. Furthermore, the ultrafast temporal evolution of the mid-infrared response function evidences the formation of optically dark excitons from an initial bright population. Our results provide key insight into the effect of non local screening on electron-hole correlations and open new possibilities of dielectric engineering of van der Waals heterostructures.
An advanced modeling approach is presented to shed light on the thermal transport properties of van der Waals materials (vdWMs) composed of single-layer transition metal dichalcogenides (TMDs) stacked on top of each other with a total or partial over lap only in the middle region. It relies on the calculation of dynamical matrices from first-principle and on their usage in a phonon quantum transport simulator. We observe that vibrations are transferred microscopically from one layer to the other along the overlap region which acts as a filter selecting out the states that can pass through it. Our work emphasizes the possibility of engineering heat flows at the nanoscale by carefully selecting the TMD monolayers that compose vdWMs.
Fe5-xGeTe2 is a van der Waals material with one of the highest reported bulk Curie temperatures, $T_C$ ~ 310K. In this study, theoretical calculations and experiments are utilized to demonstrate that the magnetic ground state is highly sensitive to l ocal atomic arrangements and the interlayer stacking. Cobalt substitution is found to be an effective way to manipulate the magnetic properties while also increasing the ordering temperature. In particular, cobalt substitution up to 30% enhances $T_C$ and changes the magnetic anisotropy, while approximately 50% cobalt substitution yields an antiferromagnetic state. Single crystal x-ray diffraction evidences a structural change upon increasing the cobalt concentration, with a rhombohedral cell observed in the parent material and a primitive cell observed for ~46% cobalt content relative to iron. First principles calculations demonstrate that it is a combination of high cobalt content and the concomitant change to primitive layer stacking that produces antiferromagnetic order. These results illustrate the sensitivity of magnetism in Fe5-xGeTe2 to composition and structure, and emphasize the important role of structural order/disorder and layer stacking in cleavable magnetic materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا