ﻻ يوجد ملخص باللغة العربية
The standard $Lambda$ Cold Dark Matter cosmological model provides a wonderful fit to current cosmological data, but a few tensions and anomalies became statistically significant with the latest data analyses. While these anomalies could be due to the presence of systematic errors in the experiments, they could also indicate the need for new physics beyond the standard model. In this Letter of Interest we focus on the tension of the Planck data with weak lensing measurements and redshift surveys, about the value of the matter energy density $Omega_m$, and the amplitude or rate of the growth of structure ($sigma_8,fsigma_8$). We list a few interesting models for solving this tension, and we discuss the importance of trying to fit with a single model a full array of data and not just one parameter at a time.
The current cosmological probes have provided a fantastic confirmation of the standard $Lambda$ Cold Dark Matter cosmological model, that has been constrained with unprecedented accuracy. However, with the increase of the experimental sensitivity a f
The standard $Lambda$ Cold Dark Matter cosmological model provides an amazing description of a wide range of astrophysical and astronomical data. However, there are a few big open questions, that make the standard model look like a first-order approx
A precise measurement of the curvature of the Universe is of primeval importance for cosmology since it could not only confirm the paradigm of primordial inflation but also help in discriminating between different early Universe scenarios. The recent
Recent weak lensing surveys have revealed that the direct measurement of the parameter combination $S_8equivsigma_8(Omega_m/0.3)^{0.5}$ -- measuring the amplitude of matter fluctuations on 8 $h^{-1}$Mpc scales -- is $sim3sigma$ discrepant with the va
We use a suite of N-body simulations that incorporate massive neutrinos as an extra-set of particles to investigate their effect on the halo mass function. We show that for cosmologies with massive neutrinos the mass function of dark matter haloes se