ترغب بنشر مسار تعليمي؟ اضغط هنا

$T_0$ censorship of early dark energy and AdS vacua

89   0   0.0 ( 0 )
 نشر من قبل Gen Ye
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Present-day temperature $T_0$ of cosmic microwave background has been precisely measured by the FIRAS experiment. We identify that the early dark energy (EDE) (non-negligible around matter-radiation equality) scenario can remain compatible with the FIRAS result, while lifting the Hubble constant $H_0$. We perform Monte Carlo Markov chain analysis to confirm our observations. We also present an $alpha$-attractor Anti-de Sitter (AdS) model of EDE, in which the AdS depth is consistently varied in the Monte Carlo Markov chain analysis. We found that our datasets weakly hinted the existence of an AdS phase near recombination with $H_0sim 73$km/s/Mpc at 1$sigma$ region in the best-fit model.



قيم البحث

اقرأ أيضاً

The Hubble tension might be resolved by injecting a new energy component, called Early Dark Energy (EDE), prior to recombination. An Anti-de Sitter (AdS) phase around recombination can make the injected energy decay faster, which thus allows a higher EDE fraction (so larger $H_0$) while prevents degrading the CMB fit. In this work, we test the AdS-EDE model with CMB and Large-Scale Structure (LSS) data. Our CMB dataset consists of low-$ell$ part of Planck TT spectrum and SPTpol polarization and lensing measurements, since this dataset predicts the CMB lensing effect consistent with $Lambda$CDM expectation. Combining it with BAO and Pantheon data, we find the bestfit values $H_0=71.92$ km/s/Mpc and $H_0=73.29$ km/s/Mpc without and with the SH0ES prior, respectively. Including cosmic shear and galaxy clusters data, we have $H_0=71.87$ km/s/Mpc and $S_8=0.785$, i.e. only $1.3sigma$ discrepancy with direct $S_8$ measurement.
177 - Bo-Yu Pu , Xiao-Dong Xu , Bin Wang 2014
We study a class of early dark energy models which has substantial amount of dark energy in the early epoch of the universe. We examine the impact of the early dark energy fluctuations on the growth of structure and the CMB power spectrum in the line ar approximation. Furthermore we investigate the influence of the interaction between the early dark energy and the dark matter and its effect on the structure growth and CMB. We finally constrain the early dark energy model parameters and the coupling between dark sectors by confronting to different observations.
82 - Tommi Tenkanen 2019
If the inflationary phase lasted longer than the minimal period, the length scales observed today originate from modes that were smaller than the Planck length during inflation. It was recently argued that this trans-Planckian problem can never arise in a consistent string theory framework, which places a stringent constraint on the energy scale of inflation, $V^{1/4}lesssim 10^9$ GeV. In this paper, we show that this requirement corresponds to a very small Hubble scale during inflation, $H_{rm inf}lesssim 1$ GeV, and therefore has serious consequences on scenarios where the dark matter density was generated by amplification of quantum fluctuations during inflation. We also present a class of inflationary models which both satisfy the above limit for the scale of inflation and are in perfect agreement with observational data.
In N=1 supergravity the tree-level scalar potential of the hidden sector may have a minimum with broken local supersymmetry (SUSY) as well as a supersymmetric Minkowski vacuum. These vacua can be degenerate, allowing for a consistent implementation o f the multiple point principle. The first minimum where SUSY is broken can be identified with the physical phase in which we live. In the second supersymmetric phase, in flat Minkowski space, SUSY may be broken dynamically either in the observable or in the hidden sectors inducing a tiny vacuum energy density. We argue that the exact degeneracy of these phases may shed light on the smallness of the cosmological constant. Other possible phenomenological implications are also discussed. In particular, we point out that the presence of such degenerate vacua may lead to small values of the quartic Higgs coupling and its beta function at the Planck scale in the physical phase.
A phenomenological model of dark energy that tracks the baryonic and cold dark matter at early times but resembles a cosmological constant at late times is explored. In the transition between these two regimes, the dark energy density drops rapidly a s if it were a relic species that freezes out, during which time the equation of state peaks at +1. Such an adjustment in the dark energy density, as it shifts from scaling to potential-domination, could be the signature of a trigger mechanism that helps explain the late-time cosmic acceleration. We show that the non-negligible dark energy density at early times, and the subsequent peak in the equation of state at the transition, leave an imprint on the cosmic microwave background anisotropy pattern and the rate of growth of large scale structure. The model introduces two new parameters, consisting of the present-day equation of state and the redshift of the freeze-out transition. A Monte Carlo Markov Chain analysis of a ten-dimensional parameter space is performed to compare the model with pre-Planck cosmic microwave background, large scale structure and supernova data and measurements of the Hubble constant. We find that the transition described by this model could have taken place as late as a redshift z~400. We explore the capability of future cosmic microwave background and weak lensing experiments to put tighter constraints on this model. The viability of this model may suggest new directions in dark-energy model building that address the coincidence problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا