ترغب بنشر مسار تعليمي؟ اضغط هنا

A Federated Multi-View Deep Learning Framework for Privacy-Preserving Recommendations

92   0   0.0 ( 0 )
 نشر من قبل Hao Li
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Privacy-preserving recommendations are recently gaining momentum, since the decentralized user data is increasingly harder to collect, by recommendation service providers, due to the serious concerns over user privacy and data security. This situation is further exacerbated by the strict government regulations such as Europes General Data Privacy Regulations(GDPR). Federated Learning(FL) is a newly developed privacy-preserving machine learning paradigm to bridge data repositories without compromising data security and privacy. Thus many federated recommendation(FedRec) algorithms have been proposed to realize personalized privacy-preserving recommendations. However, existing FedRec algorithms, mostly extended from traditional collaborative filtering(CF) method, cannot address cold-start problem well. In addition, their performance overhead w.r.t. model accuracy, trained in a federated setting, is often non-negligible comparing to centralized recommendations. This paper studies this issue and presents FL-MV-DSSM, a generic content-based federated multi-view recommendation framework that not only addresses the cold-start problem, but also significantly boosts the recommendation performance by learning a federated model from multiple data source for capturing richer user-level features. The new federated multi-view setting, proposed by FL-MV-DSSM, opens new usage models and brings in new security challenges to FL in recommendation scenarios. We prove the security guarantees of xxx, and empirical evaluations on FL-MV-DSSM and its variations with public datasets demonstrate its effectiveness. Our codes will be released if this paper is accepted.



قيم البحث

اقرأ أيضاً

News recommendation is critical for personalized news access. Most existing news recommendation methods rely on centralized storage of users historical news click behavior data, which may lead to privacy concerns and hazards. Federated Learning is a privacy-preserving framework for multiple clients to collaboratively train models without sharing their private data. However, the computation and communication cost of directly learning many existing news recommendation models in a federated way are unacceptable for user clients. In this paper, we propose an efficient federated learning framework for privacy-preserving news recommendation. Instead of training and communicating the whole model, we decompose the news recommendation model into a large news model maintained in the server and a light-weight user model shared on both server and clients, where news representations and user model are communicated between server and clients. More specifically, the clients request the user model and news representations from the server, and send their locally computed gradients to the server for aggregation. The server updates its global user model with the aggregated gradients, and further updates its news model to infer updated news representations. Since the local gradients may contain private information, we propose a secure aggregation method to aggregate gradients in a privacy-preserving way. Experiments on two real-world datasets show that our method can reduce the computation and communication cost on clients while keep promising model performance.
Non-intrusive load monitoring (NILM), which usually utilizes machine learning methods and is effective in disaggregating smart meter readings from the household-level into appliance-level consumptions, can help to analyze electricity consumption beha viours of users and enable practical smart energy and smart grid applications. However, smart meters are privately owned and distributed, which make real-world applications of NILM challenging. To this end, this paper develops a distributed and privacy-preserving federated deep learning framework for NILM (FederatedNILM), which combines federated learning with a state-of-the-art deep learning architecture to conduct NILM for the classification of typical states of household appliances. Through extensive comparative experiments, the effectiveness of the proposed FederatedNILM framework is demonstrated.
Machine learning (ML) based smart meter data analytics is very promising for energy management and demand-response applications in the advanced metering infrastructure(AMI). A key challenge in developing distributed ML applications for AMI is to pres erve user privacy while allowing active end-users participation. This paper addresses this challenge and proposes a privacy-preserving federated learning framework for ML applications in the AMI. We consider each smart meter as a federated edge device hosting an ML application that exchanges information with a central aggregator or a data concentrator, periodically. Instead of transferring the raw data sensed by the smart meters, the ML model weights are transferred to the aggregator to preserve privacy. The aggregator processes these parameters to devise a robust ML model that can be substituted at each edge device. We also discuss strategies to enhance privacy and improve communication efficiency while sharing the ML model parameters, suited for relatively slow network connections in the AMI. We demonstrate the proposed framework on a use case federated ML (FML) application that improves short-term load forecasting (STLF). We use a long short-term memory(LSTM) recurrent neural network (RNN) model for STLF. In our architecture, we assume that there is an aggregator connected to a group of smart meters. The aggregator uses the learned model gradients received from the federated smart meters to generate an aggregate, robust RNN model which improves the forecasting accuracy for individual and aggregated STLF. Our results indicate that with FML, forecasting accuracy is increased while preserving the data privacy of the end-users.
The high demand of artificial intelligence services at the edges that also preserve data privacy has pushed the research on novel machine learning paradigms that fit those requirements. Federated learning has the ambition to protect data privacy thro ugh distributed learning methods that keep the data in their data silos. Likewise, differential privacy attains to improve the protection of data privacy by measuring the privacy loss in the communication among the elements of federated learning. The prospective matching of federated learning and differential privacy to the challenges of data privacy protection has caused the release of several software tools that support their functionalities, but they lack of the needed unified vision for those techniques, and a methodological workflow that support their use. Hence, we present the Sherpa.ai Federated Learning framework that is built upon an holistic view of federated learning and differential privacy. It results from the study of how to adapt the machine learning paradigm to federated learning, and the definition of methodological guidelines for developing artificial intelligence services based on federated learning and differential privacy. We show how to follow the methodological guidelines with the Sherpa.ai Federated Learning framework by means of a classification and a regression use cases.
In the mobile Internet era, the recommender system has become an irreplaceable tool to help users discover useful items, and thus alleviating the information overload problem. Recent deep neural network (DNN)-based recommender system research have ma de significant progress in improving prediction accuracy, which is largely attributed to the access to a large amount of users personal data collected from users devices and then centrally stored in the cloud server. However, as there are rising concerns around the globe on user privacy leakage in the online platform, the public is becoming anxious by such abuse of user privacy. Therefore, it is urgent and beneficial to develop a recommender system that can achieve both high prediction accuracy and high degree of user privacy protection. To this end, we propose a DNN-based recommendation model called PrivRec running on the decentralized federated learning (FL) environment, which ensures that a users data never leaves his/her during the course of model training. On the other hand, to better embrace the data heterogeneity commonly existing in FL, we innovatively introduce a first-order meta-learning method that enables fast in-device personalization with only few data points. Furthermore, to defense from potential malicious participant that poses serious security threat to other users, we develop a user-level differentially private DP-PrivRec model so that it is unable to determine whether a particular user is present or not solely based on the trained model. Finally, we conduct extensive experiments on two large-scale datasets in a simulated FL environment, and the results validate the superiority of our proposed PrivRec and DP-PrivRec.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا