ﻻ يوجد ملخص باللغة العربية
This is a survey on Anderson t-motives -- the functional field analogs of abelian varieties with multiplication by an imaginary quadratic field. We define their lattices, the group $H^1$, their tensor products and the duality functor. Some examples of explicit calculations are given, some elementary research problems are stated.
Let $M$ be a T-motive. We introduce the notion of duality for $M$. Main results of the paper (we consider uniformizable $M$ over $F_q[T]$ of rank $r$, dimension $n$, whose nilpotent operator $N$ is 0): 1. Algebraic duality implies analytic duality
This paper extends the main result of the paper Duality of Anderson $t$-motives, that the lattice of the dual of a t-motive $M$ is the dual lattice of $M$, to the case when the nilpotent operator $N$ of $M$ is non-zero.
Let $M$ be an Anderson t-motive of dimension $n$ and rank $r$. Associated are two $Bbb F_q[T]$-modules $H^1(M)$, $H_1(M)$ of dimensions $h^1(M)$, $h_1(M)le r$ - analogs of $H^1(A,Bbb Z)$, $H_1(A,Bbb Z)$ for an abelian variety $A$. There is a theorem
We consider Anderson t-motives $M$ of dimension 2 and rank 4 defined by some simple explicit equations parameterized by $2times2$ matrices. We use methods of explicit calculation of $h^1(M)$ -- the dimension of their cohomology group $H^1(M)$ ( = the
We establish the group-theoretic classification of Sato-Tate groups of self-dual motives of weight 3 with rational coefficients and Hodge numbers h^{3,0} = h^{2,1} = h^{1,2} = h^{0,3} = 1. We then describe families of motives that realize some of the