ﻻ يوجد ملخص باللغة العربية
The quality of image generation and manipulation is reaching impressive levels, making it increasingly difficult for a human to distinguish between what is real and what is fake. However, deep networks can still pick up on the subtle artifacts in these doctored images. We seek to understand what properties of fake images make them detectable and identify what generalizes across different model architectures, datasets, and variations in training. We use a patch-based classifier with limited receptive fields to visualize which regions of fake images are more easily detectable. We further show a technique to exaggerate these detectable properties and demonstrate that, even when the image generator is adversarially finetuned against a fake image classifier, it is still imperfect and leaves detectable artifacts in certain image patches. Code is available at https://chail.github.io/patch-forensics/.
Recent studies on image memorability have shed light on the visual features that make generic images, object images or face photographs memorable. However, a clear understanding and reliable estimation of natural scene memorability remain elusive. In
Recent studies indicate that hierarchical Vision Transformer with a macro architecture of interleaved non-overlapped window-based self-attention & shifted-window operation is able to achieve state-of-the-art performance in various visual recognition
Consider end-to-end training of a multi-modal vs. a single-modal network on a task with multiple input modalities: the multi-modal network receives more information, so it should match or outperform its single-modal counterpart. In our experiments, h
Contrastive learning between multiple views of the data has recently achieved state of the art performance in the field of self-supervised representation learning. Despite its success, the influence of different view choices has been less studied. In
Contrastive visual pretraining based on the instance discrimination pretext task has made significant progress. Notably, recent work on unsupervised pretraining has shown to surpass the supervised counterpart for finetuning downstream applications su