ترغب بنشر مسار تعليمي؟ اضغط هنا

Joint action of Hall and ambipolar effects in 3D magneto-convection simulations of the quiet Sun. I. Dissipation and generation of waves

94   0   0.0 ( 0 )
 نشر من قبل Elena Khomenko
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The partial ionization of the solar plasma causes several nonideal effects such as the ambipolar diffusion, the Hall effect, and the Biermann battery effect. Here we report on the first three-dimensional realistic simulations of solar local dynamo where all three effects were taken into account. The simulations started with a snapshot of already saturated battery-seeded dynamo, where two new series were developed: one with solely ambipolar diffusion and another one also taking into account the Hall term in the generalized Ohms law. The simulations were then run for about 4 hours of solar time to reach the stationary regime and improve the statistics. In parallel, a purely MHD dynamo simulation was also run for the same amount of time. The simulations are compared in a statistical way. The results show that, with the inclusion of the ambipolar diffusion, the amplitudes of the incompressible perturbations related to Alfven waves are reduced, and the Poynting flux is absorbed, with a frequency dependence. The Hall effect causes the opposite action: significant excess of incompressible perturbations is generated and an excess of the Poynting flux is observed in the chromospheric layers. The model with ambipolar diffusion shows, on average, sharper current sheets and slightly more abundant fast magneto-acoustic shocks in the chromosphere. The model with the Hall effect has higher temperatures at the lower chromosphere and stronger and more vertical magnetic field concentrations all over the chromosphere. The study of high-frequency waves reveals that significant power of incompressible perturbations is associated with areas with intense and more vertical magnetic fields and larger temperatures. We find a positive correlation between the magnitude of the ambipolar heating and the temperature increase at the same location after a characteristic time of 10^2 sec.



قيم البحث

اقرأ أيضاً

This paper presents the results of the analysis of 3D simulations of solar magneto-convection that include the joint action of the ambipolar diffusion and the Hall effect. Three simulation-runs are compared: one including both ambipolar diffusion and Hall effect; one including only ambipolar diffusion; and one without any of these two effects. The magnetic field is amplified from initial field to saturation level by the action of turbulent local dynamo. In each of these cases, we study 2 hours of simulated solar time after the local dynamo reaches the saturation regime. We analyze the power spectra of vorticity, of magnetic field fluctuations and of the different components of the magnetic Poynting flux responsible for the transport of vertical or horizontal perturbations. Our preliminary results show that the ambipolar diffusion produces a strong reduction of vorticity in the upper chromospheric layers and that it dissipates the vortical perturbations converting them into thermal energy. The Hall effect acts in the opposite way, strongly enhancing the vorticity. When the Hall effect is included, the magnetic field in the simulations becomes, on average, more vertical and long-lived flux tube-like structures are produced. We trace a single magnetic structure to study its evolution pattern and the magnetic field intensification, and their possible relation to the Hall effect.
We analyze the evolution of shock waves in high-resolution 3D radiative MHD simulations of the quiet Sun and their synthetic emission characteristics. The simulations model the dynamics of a 12.8x12.8x15.2 Mm quiet-Sun region (including a 5.2 Mm laye r of the upper convection zone and a 10 Mm atmosphere from the photosphere to corona) with an initially uniform vertical magnetic field of 10 G, naturally driven by convective flows. We synthesize the Mg II and C II spectral lines observed by the IRIS satellite and EUV emission observed by the SDO/AIA telescope. Synthetic observations are obtained using the RH1.5D radiative transfer code and temperature response functions at both the numerical and instrumental resolutions. We found that the Doppler velocity jumps of the C II 1334.5 A IRIS line and a relative enhancement of the emission in the 335 A SDO/AIA channel are the best proxies for the enthalpy deposited by shock waves into the corona (with Kendalls $tau$ correlation coefficients of 0.59 and 0.38, respectively). The synthetic emission of the lines and extreme ultraviolet passbands are correlated with each other during the shock wave propagation. All studied shocks are mostly hydrodynamic (i.e., the magnetic energy carried by horizontal fields is $leq{}$2.6% of the enthalpy for all events) and have Mach numbers > 1.0-1.2 in the low corona. The study reveals the possibility of diagnosing energy transport by shock waves into the solar corona, as well as their other properties, by using IRIS and SDO/AIA sensing observations.
We present a series of numerical simulations of the quiet Sun plasma threaded by magnetic fields that extend from the upper convection zone into the low corona. We discuss an efficient, simplified approximation to the physics of optically thick radia tive transport through the surface layers, and investigate the effects of convective turbulence on the magnetic structure of the Suns atmosphere in an initially unipolar (open field) region. We find that the net Poynting flux below the surface is on average directed toward the interior, while in the photosphere and chromosphere the net flow of electromagnetic energy is outward into the solar corona. Overturning convective motions between these layers driven by rapid radiative cooling appears to be the source of energy for the oppositely directed fluxes of electromagnetic energy.
Over the last decades, realistic 3D radiative-MHD simulations have become the dominant theoretical tool for understanding the complex interactions between the plasma and the magnetic field on the Sun. Most of such simulations are based on approximati ons of magnetohydrodynamics, without directly considering the consequences of the very low degree of ionization of the solar plasma in the photosphere and bottom chromosphere. The presence of large amount of neutrals leads to a partial decoupling of the plasma and the magnetic field. As a consequence of that, a series of non-ideal effects (ambipolar diffusion, Hall effect and battery effect) arises. The ambipolar effect is the dominant one in the solar chromosphere. Here we report on the first three-dimensional realistic simulations of magneto-convection including ambipolar diffusion and battery effects. The simulations are done using the newly developed Mancha3D code. Our results reveal that ambipolar diffusion causes measurable effects on the amplitudes of waves excited by convection in the simulations, on the absorption of Poynting flux and heating and on the formation of chromospheric structures. We provide a low limit on the chromospheric temperature increase due to the ambipolar effect using the simulations with battery-excited dynamo fields.
Five-minutes oscillations is one of the basic properties of solar convection. Observations show mixture of a large number of acoustic wave fronts propagating from their sources. We investigate the process of acoustic waves excitation from the point o f view of individual events, by using realistic 3D radiative hydrodynamic simulation of the quiet Sun. The results show that the excitation events are related to dynamics vortex tubes (or swirls) in the intergranular lanes. These whirlpool-like flows are characterized by very strong horizontal velocities (7 - 11 km/s) and downflows (~ 7 km/s), and are accompanied by strong decreases of the temperature, density and pressure at the surface and in a ~ 0.5-1 Mm deep layer below the surface. High-speed whirlpool flows can attract and capture other vortices. According to our simulation results, the processes of the vortex interaction, such as vortex annihilation, can cause the excitation of acoustic waves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا