ﻻ يوجد ملخص باللغة العربية
We initiate an exploration of the conformal bootstrap for $n>4$ point correlation functions. Here we bootstrap correlation functions of the lightest scalar gauge invariant operators in planar non-abelian conformal gauge theories as their locations approach the cusps of a null polygon. For that we consider consistency of the OPE in the so-called snowflake channel with respect to cyclicity transformations which leave the null configuration invariant. For general non-abelian gauge theories this allows us to strongly constrain the OPE structure constants of up to three large spin $J_j$ operators (and large polarization quantum number $l_{j}$) to all loop orders. In $ mathcal{N}=4$ we fix them completely through the duality to null polygonal Wilson loops and the recent origin limit of the hexagon explored by Basso, Dixon and Papathanasiou.
The light cone OPE limit provides a significant amount of information regarding the conformal field theory (CFT), like the high-low temperature limit of the partition function. We started with the light cone bootstrap in the {it general} CFT ${}_2$ w
We study the operator product expansion (OPE) of two identical scalar primary operators in the lightcone limit in a conformal field theory where a scalar is the operator with lowest twist. We see that in CFTs where both the stress tensor and a scalar
In this work we apply the lightcone bootstrap to a four-point function of scalars in two-dimensional conformal field theory. We include the entire Virasoro symmetry and consider non-rational theories with a gap in the spectrum from the vacuum and no
We derive a nonperturbative, convergent operator product expansion (OPE) for null-integrated operators on the same null plane in a CFT. The objects appearing in the expansion are light-ray operators, whose matrix elements can be computed by the gener
General principles of quantum field theory imply that there exists an operator product expansion (OPE) for Wightman functions in Minkowski momentum space that converges for arbitrary kinematics. This convergence is guaranteed to hold in the sense of