ﻻ يوجد ملخص باللغة العربية
This paper designs a cooperative activity detection framework for massive grant-free random access in the sixth-generation (6G) cell-free wireless networks based on the covariance of the received signals at the access points (APs). In particular, multiple APs cooperatively detect the device activity by only exchanging the low-dimensional intermediate local information with their neighbors. The cooperative activity detection problem is non-smooth and the unknown variables are coupled with each other for which conventional approaches are inapplicable. Therefore, this paper proposes a covariance-based algorithm by exploiting the sparsity-promoting and similarity-promoting terms of the device state vectors among neighboring APs. An approximate splitting approach is proposed based on the proximal gradient method for solving the formulated problem. Simulation results show that the proposed algorithm is efficient for large-scale activity detection problems while requires shorter pilot sequences compared with the state-of-art algorithms in achieving the same system performance.
This paper investigates the issue of cooperative activity detection for grant-free random access in the sixth-generation (6G) cell-free wireless networks with sourced and unsourced paradigms. First, we propose a cooperative framework for solving the
In the massive machine-type communication (mMTC) scenario, a large number of devices with sporadic traffic need to access the network on limited radio resources. While grant-free random access has emerged as a promising mechanism for massive access,
To support machine-type communication (MTC), massive multiple-input multiple-output (MIMO) has been considered for grant-free random access. In general, the performance of grant-free random access with massive MIMO is limited by the number of preambl
With recent advances on the dense low-earth orbit (LEO) constellation, LEO satellite network has become one promising solution to providing global coverage for Internet-of-Things (IoT) services. Confronted with the sporadic transmission from randomly
Device activity detection is one main challenge in grant-free massive access, which is recently proposed to support massive machine-type communications (mMTC). Existing solutions for device activity detection fail to consider inter-cell interference