One-Dimensional Twisted and Tubular Structures of Zinc Oxide by Semiconductor-Catalyzed Vapor-Liquid-Solid Synthesis


الملخص بالإنكليزية

The exploration of new catalysts for the vapor-liquid-solid (VLS) synthesis of one-dimensional (1-D) materials promises to yield new morphologies and functionality. Here, we show, for the model ZnO system, that this possible using a semiconductor (Ge) catalyst. In particular, two unusual morphologies are described: twisted nanowires and twisted nanotubes, in addition to the usual straight nanowires. The twisted nanotubes show large hollow cores and surprisingly high twisting rates (up to 9o/{mu}m), which cannot be easily explained through the Eshelby twist model. A combination of ex situ and in situ transmission electron microscopy measurements suggest that the hollow core results from a competition between growth and etching at the Ge-ZnO interface during synthesis. The twisting rate is consistent with a softening of elastic rigidity. These results indicate that the use of unconventional, nonmetallic catalysts provide opportunities to synthesize unusual oxide structures with potentially useful properties.

تحميل البحث