ﻻ يوجد ملخص باللغة العربية
This paper studies both existence and spectral stability properties of bounded spatially periodic traveling wave solutions to a large class of scalar viscous balance laws in one space dimension with a reaction function of monostable or Fisher-KPP type. Under suitable structural assumptions, it is shown that this class of equations underlies two families of periodic waves. The first family consists of small amplitude waves with finite fundamental period which emerge from a Hopf bifurcation around a critical value of the wave speed. The second family pertains to arbitrarily large period waves which arise from a homoclinic bifurcation and tend to a limiting traveling (homoclinic) pulse when their fundamental period tends to infinity. For both families, it is shown that the Floquet (continuous) spectrum of the linearization around the periodic waves intersects the unstable half plane of complex values with positive real part, a property known as spectral instability. For that purpose, in the case of small-amplitude waves it is proved that the spectrum of the linearized operator around the wave can be approximated by that of a constant coefficient operator around the zero solution and determined by a dispersion relation which intersects the unstable complex half plane. In the case of large period waves, we verify that the family satisfies the assumptions of the seminal result by Gardner (1997, J. Reine Angew. Math. 491, pp. 149-181) of convergence of periodic spectra in the infinite-period limit to that of the underlying homoclinic wave, which is unstable. A few examples are discussed.
The large time behavior of the solutions to a multi-dimensional viscous conservation law is considered in this paper. It is shown that the solution time-asymptotically tends to the planar rarefaction wave if the initial perturbations are multi-dimens
We consider the nonlocal analogue of the Fisher-KPP equation. We do not assume that the Borel-measure is absolutely continuous with respect to the Lebesgue measure. We gives a sufficient condition for existence of traveling waves, and a necessary condition for existence of periodic traveling waves.
We prove that the viscous Burgers equation has a globally defined smooth solution in all dimensions provided the initial condition and the forcing term are smooth and bounded together with their derivatives. Such solutions may have infinite energy. T
We consider a nonlocal analogue of the Fisher-KPP equation. We do not assume that the Borel-measure for the convolution is absolutely continuous. In order to show the main result, we modify a recursive method for abstract monotone discrete dynamical
In this paper, we investigate and prove the nonlinear stability of viscous shock wave solutions of a scalar viscous conservation law, using the methods developed for general systems of conservation laws by Howard, Mascia, Zumbrun and others, based on