ﻻ يوجد ملخص باللغة العربية
By combining density-functional theory (DFT) and wave function theory (WFT) via the range separation (RS) of the interelectronic Coulomb operator, we obtain accurate fixed-node diffusion Monte Carlo (FN-DMC) energies with compact multi-determinant trial wave functions. In particular, we combine here short-range exchange-correlation functionals with a flavor of selected configuration interaction (SCI) known as emph{configuration interaction using a perturbative selection made iteratively} (CIPSI), a scheme that we label RS-DFT-CIPSI. One of the take-home messages of the present study is that RS-DFT-CIPSI trial wave functions yield lower fixed-node energies with more compact multi-determinant expansions than CIPSI, especially for small basis sets. Indeed, as the CIPSI component of RS-DFT-CIPSI is relieved from describing the short-range part of the correlation hole around the electron-electron coalescence points, the number of determinants in the trial wave function required to reach a given accuracy is significantly reduced as compared to a conventional CIPSI calculation. Importantly, by performing various numerical experiments, we evidence that the RS-DFT scheme essentially plays the role of a simple Jastrow factor by mimicking short-range correlation effects, hence avoiding the burden of performing a stochastic optimization. Considering the 55 atomization energies of the Gaussian-1 benchmark set of molecules, we show that using a fixed value of $mu=0.5$~bohr$^{-1}$ provides effective error cancellations as well as compact trial wave functions, making the present method a good candidate for the accurate description of large chemical systems.
While Diffusion Monte Carlo (DMC) is in principle an exact stochastic method for textit{ab initio} electronic structure calculations, in practice the fermionic sign problem necessitates the use of the fixed-node approximation and trial wavefunctions
Fixed-node Greens function Monte Carlo calculations have been performed for very large 16x6 2D Hubbard lattices, large interaction strengths U=10,20, and 40, and many (15-20) densities between empty and half filling. The nodes were fixed by a simple
Quantum Monte Carlo (QMC) methods are some of the most accurate methods for simulating correlated electronic systems. We investigate the compatibility, strengths and weaknesses of two such methods, namely, diffusion Monte Carlo (DMC) and auxiliary-fi
While the Quasi-Monte Carlo method of numerical integration achieves smaller integration error than standard Monte Carlo, its use in particle physics phenomenology has been hindered by the abscence of a reliable way to estimate that error. The standa
The accuracy and efficiency of ab-initio quantum Monte Carlo (QMC) algorithms benefits greatly from compact variational trial wave functions that accurately reproduce ground state properties of a system. We investigate the possibility of using multi-