ﻻ يوجد ملخص باللغة العربية
The dust-to-stellar mass ratio ($M_{rm dust}$/$M_{rm star}$) is a crucial yet poorly constrained quantity to understand the production mechanisms of dust, metals and stars in galaxy evolution. In this work we explore and interpret the nature of $M_{rm dust}$/$M_{rm star}$ in 300 massive ($M_{star}>10^{10}M_{odot}$), dusty star-forming galaxies detected with ALMA up to $zapprox5$. We find that $M_{rm dust}$/$M_{rm star}$ evolves with redshift, stellar mass, specific SFR and integrated dust size, differently for main sequence and starburst galaxies. In both galaxy populations $M_{rm dust}$/$M_{rm star}$ rises until $zsim2$ followed by a roughly flat trend towards higher redshifts. We show that the inverse relation between $M_{rm dust}$/$M_{rm star}$ and $M_{star}$ holds up to $zapprox5$ and can be interpreted as an evolutionary transition from early to late starburst phases. We demonstrate that $M_{rm dust}$/$M_{rm star}$ in starbursts mirrors the increase in molecular gas fraction with redshift, and is enhanced in objects with the most compact dusty star-formation. The state-of-the-art cosmological simulation SIMBA broadly matches the evolution of $M_{rm dust}$/$M_{rm star}$ in main sequence galaxies, but underestimates it in starbursts. The latter is found to be linked to lower gas-phase metallicities and longer dust growth timescales relative to data. Our data are well reproduced by analytical model that includes recipes for rapid metal enrichment, strongly suggesting that high $M_{rm dust}$/$M_{rm star}$ is due to fast grain growth in metal enriched ISM. Our work highlights multifold benefits of using $M_{rm dust}$/$M_{rm star}$ as a diagnostic tool for: (1) separating main sequence and starburst galaxies until $zsim5$; (2) probing the evolutionary phases of dusty galaxies, and (3) refining the treatment of dust life cycle in simulations.
The survival of dust grains in galaxies depends on various processes. Dust can be produced in stars, it can grow in the interstellar medium and be destroyed by astration and interstellar shocks. In this paper, we assemble a few data samples of local
We study how the void environment affects the formation and evolution of galaxies in the universe by comparing the ratio of dark matter halo mass to stellar mass of galaxies in voids with galaxies in denser regions. Using spectroscopic observations f
The Spitzer Matching Survey of the UltraVISTA Ultra-deep Stripes (SMUVS) has obtained the largest ultra-deep Spitzer maps to date in a single field of the sky. We considered the sample of about 66,000 SMUVS sources at $z=2-6$ to investigate the evolu
We present new stellar mass functions at $zsim6$, $zsim7$, $zsim8$, $zsim9$ and, for the first time, $zsim10$, constructed from $sim800$ Lyman-Break galaxies previously identified over the XDF/UDF, parallels and the five CANDELS fields. Our study is
We study the evolution in the number density of the highest mass galaxies over $0.4<z<1.5$ (covering 9 Gyr). We use the Spitzer/HETDEX Exploratory Large-Area (SHELA) Survey, which covers 17.5 $mathrm{deg}^2$ with eight photometric bands spanning 0.3-