Tunable mechanics and fracture resistance are hallmarks of biological tissues and highly desired in engineered materials. To elucidate the underlying mechanisms, we study a rigidly percolating double network (DN) made of a stiff and a flexible network. The DN shows remarkable tunability in mechanical response when the stiff network is just above its rigidity percolation threshold and minimal changes far from this threshold. Further, the DN can be modulated to either be extensible, breaking gradually, or stronger, breaking in a more brittle fashion by varying the flexible networks concentration.