ﻻ يوجد ملخص باللغة العربية
We present a non-Hermitian Floquet model with topological edge states in real and imaginary band gaps. The model utilizes two stacked honeycomb lattices which can be related via four different types of non-Hermitian time-reversal symmetry. Implementing the correct time-reversal symmetry provides us with either two counterpropagating edge states in a real gap, or a single edge state in an imaginary gap. The counterpropagating edge states allow for either helical or chiral transport along the lattice perimeter. In stark contrast, we find that the edge state in the imaginary gap does not propagate. Instead, it remains spatially localized while its amplitude continuously increases. Our model is well-suited for realizing these edge states in photonic waveguide lattices.
The experimental study of edge states in atomically-thin layered materials remains a challenge due to the difficult control of the geometry of the sample terminations, the stability of dangling bonds and the need to measure local properties. In the c
We report on the effect of laser illumination with circularly polarized light on the electronic structure of AB-stacked graphite samples. By using Floquet theory in combination with Greens function techniques, we find that the polarized light induces
We report the realization of a synthetic magnetic field for photons and polaritons in a honeycomb lattice of coupled semiconductor micropillars. A strong synthetic field is induced in both the s and p orbital bands by engineering a uniaxial hopping g
Topological phases of matter have attracted much attention over the years. Motivated by analogy with photonic lattices, here we examine the edge states of a one-dimensional trimer lattice in the phases with and without inversion symmetry protection.
Magnetic chains on superconducting systems have emerged as a platform for realization of Majorana bound states (MBSs) in condensed matter systems with possible applications to topological quantum computation. In this work we study the MBSs formed in