ترغب بنشر مسار تعليمي؟ اضغط هنا

High-throughput ensemble characterization of individual core-shell nanoparticles with quantitative 3D density from XFEL single-particle imaging

174   0   0.0 ( 0 )
 نشر من قبل Changyong Song
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The structures, as building-blocks for designing functional nanomaterials, have fueled the development of versatile nanoprobes to understand local structures of noncrystalline specimens. Progresses in analyzing structures of individual specimens with atomic scale accuracy have been notable recently. In most cases, however, only a limited number of specimens are inspected lacking statistics to represent the systems with structural inhomogeneity. Here, by employing single-particle imaging with X-ray free electron lasers and new algorithm for multiple-model 3D imaging, we succeeded in investigating several thousand specimens in a couple of hours, and identified intrinsic heterogeneities with 3D structures. Quantitative analysis has unveiled 3D morphology, facet indices and elastic strains. The 3D elastic energy distribution is further corroborated by molecular dynamics simulations to gain mechanical insight at atomic level. This work establishes a new route to high-throughput characterization of individual specimens in large ensembles, hence overcoming statistical deficiency while providing quantitative information at the nanoscale.



قيم البحث

اقرأ أيضاً

We report on the fabrication and measurements of platinum-self-aligned nanogap devices containing cubed iron (core)/iron oxide (shell) nanoparticles (NPs) with two average different sizes (13 and 17 nm). The nanoparticles are deposited by means of a cluster gun technique. Their trapping across the nanogap is demonstrated by comparing the current vs voltage characteristics (I-Vs) before and after the deposition. At low temperature, the I-Vs can be well fitted to the Korotkov and Nazarov Coulomb blockade model, which captures the coexistence of single-electron tunneling and tunnel barrier suppression upon a bias voltage increase. The measurements thus show that Coulomb-blockaded devices can be made with a nanoparticle cluster source, which extends the existing possibilities to fabricate such devices to those in which it is very challenging to reduce the usual NP agglomeration given by a solution method.
Previous single-particle spectroscopic studies of colloidal quantum dots have indicated a significant spread in biexciton lifetimes across an ensemble of nominally identical nanocrystals. It has been speculated that in addition to dot-to-dot variatio n in physical dimensions, this spread is contributed to by variations in the structure of the quantum dot interface, which controls the shape of the confinement potential. Here we directly evaluate the effect of the composition of the core-shell interface on single- and multi-exciton dynamics via side-by-side measurements of individual core-shell CdSe-CdS nanocrystals with a sharp vs. smooth (graded) interface. To realize the latter type of structures, we incorporate a CdSexS1-x alloy layer of controlled composition and thickness between the CdSe core and the CdS shell. We observe that while having essentially no effect on single-exciton decay, the interfacial alloy layer leads to a systematic increase in biexciton lifetimes. This observation provides direct experimental evidence that in addition to the size of the quantum dot, its interfacial properties also significantly affect the rate of Auger recombination, which governs biexciton decay. These findings help rationalize previous observations of a significant heterogeneity in the biexciton lifetimes across similarly sized quantum dots and should facilitate the development of Auger-recombination-free colloidal nanostructures for a range of applications from lasers and light-emitting diodes to photodetectors and solar cells.
We model shell formation of core-shell noble metal nanoparticles. A recently developed kinetic Monte Carlo approach is utilized to reproduce growth morphologies realized in recent experiments on core-shell nanoparticle synthesis, which reported smoot h epitaxially grown shells. Specifically, we identify growth regimes that yield such smooth shells, but also those that lead to the formation of shells made of small clusters. The developed modeling approach allows us to qualitatively study the effects of temperature and supply the shell-metal atoms on the resulting shell morphology, when grown on a pre-synthesized nanocrystal core.
We present a numerical simulation study of the exchange bias (EB) effect in nanoparticles with core/shell structure aimed to unveil the microscopic origin of some of the experimental phenomenology associated to this effect. In particular, we have foc used our study on the particle size and field cooling dependence of the hysteresis loop shifts. To this end, hysteresis loops after a field cooling process have been computed by means of Monte Carlo simulations based on a model that takes into account the peculiar properties of the core, shell and interfacial regions of the particle and the EB and coercive fields have been extracted from them. The results show that, as a general trend, the EB field $h_{EB}$ decreases with increasing particle size, in agreement with some experimental observations. However, closer inspection reveals notable oscillations of $h_{EB}$ as a function of the particle radius which we show to be closely related to the net magnetization established after field cooling at the interfacial shell spins. For a particle with ferromagnetic interface coupling, we show that the magnitude and sign of $h_{EB}$ can be varied with the magnetic field applied during the cooling process.
We present an atomistic model of a single nanoparticle with core/shell structure that takes into account its lattice strucutre and spherical geometry, and in which the values of microscopic parameters such as anisotropy and exchange constants can be tuned in the core, shell and interfacial regions. By means of Monte Carlo simulations of the hysteresis loops based on this model, we have determined the range of microscopic parameters for which loop shifts after field cooling can be observed. The study of the magnetic order of the interfacial spins for different particles sizes and values of the interfacial exchange coupling have allowed us to correlate the appearance of loop asymmetries and vertical displacements to the existence of a fraction of uncompensated spins at the shell interface that remain pinned during field cycling, offering new insight on the microscopic origin of the experimental phenomenology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا